В избранное

загрузка...

23726

Перевод условия задачи на математический язык

Конспект урока

Математика и математический анализ

Количество детей в одном автобусе Количество автобусов Общее количество детей Большие автобусы Маленькие автобусы 3. – Какую формулу нужно использовать для выполнения задания Чтобы найти сколько всего человек поехало на экскурсию надо количество людей в одном автобусе умножить на количество автобусов т. Количество детей в одном автобусе Количество автобусов Общее количество детей Большие автобусы x 6 y 1 x 6y 1 или 252 Маленькие автобусы x y xy или 252 Работу можно организовать в группах или используя подводящий диалог. –...

Русский

2013-08-05

58.5 KB

5 чел.

Вариант конспекта урока по математике (5-6 класс)

для апробации на экспериментальных

площадках ассоциации «Школа 2000…»

Тема урока: «Перевод условия задачи на математический язык».

Тип урока: «открытие» нового знания.

Основная цель:

1) Тренировать способность к построению моделей текстовых задач на основе использования таблиц.

2) Повторить и закрепить понятия множества, замкнутой и незамкнутой линии, области и границы, частные случаи арифметических действий с 0 и 1, решение примеров на порядок действий, тренировать вычислительные навыки.

1. Самоопределение к деятельности.

– Какой основной признак был у задач, для которых мы составляли математические модели? (Во всех задачах использовалась формула произведения, моделью было уравнение вида x(x +a) = b).

– Что нам помогало составлять математическую модель? (Таблица, которую мы заполняли по условию задачи).

– Сегодня мы продолжим работать с таблицами.

2. Актуализация знаний и фиксация затруднения в деятельности.

1. – Вычислите, записывая только ответы.

  •  Утроенное число 12 повторить слагаемым 2 раза. (72.)
  •  Найдите произведение двух чисел: первое равно 4, а второе в 9 раз больше первого. (144.)
  •  12 увеличьте во столько раз, скольким равна сумма его цифр. (36.)

– Расставьте ответы в порядке возрастания. (36, 72, 144.)

– Что общего у всех чисел? (Все числа четные.)

– Установите закономерность и найдите следующее число. (288.)

– Сравните число 288 с наименьшим числом данного ряда. (288 больше, чем 36, на 252 и в 8 раз.)

– Дайте характеристику числу 36. (36 – двузначное число, содержит 3 десятка и 6 единиц, предыдущее 35, последующее – 37, сумма цифр – 9, сумма разрядных слагаемых – 30 + 6.)

– Придумайте числовые выражения, значения которых равны 36.

2. Индивидуальное задание.

Постройте математическую модель задачи:

«На экскурсию едут 252 ученика школы. Для них заказаны автобусы. Однако выяснилось, что если заказать автобусы, вмещающие на 6 человек больше, то автобусов потребуется на 1 меньше. Сколько больших автобусов надо заказать?».

Количество детей в одном автобусе

Количество

автобусов

Общее

количество детей

Большие

автобусы

Маленькие

автобусы

3. Выявление причины затруднения, постановка цели деятельности.

– Какую формулу нужно использовать для выполнения задания? (Чтобы найти сколько, всего человек поехало на экскурсию, надо количество людей в одном автобусе умножить на количество автобусов, т.е. надо использовать формулу произведения).

– Почему же вы не смогли выполнить задание? (Мы не знаем, сколько маленьких автобусов, сколько больших автобусов, сколько человек вмещается в маленький автобус, сколько человек вмещается в большой автобус, много неизвестных).

– Для каких задач мы сегодня будем учиться строить математические модели? (Для задач, в которых много неизвестных).

– Как можно сформулировать тему урока? (Перевод условий с несколькими неизвестными).

4. Построение проекта выхода из затруднения.

– Перерисуйте в тетрадь таблицу.

Количество детей в одном автобусе

Количество

автобусов

Общее

количество детей

Большие

автобусы

x + 6

y - 1

(x + 6)(y - 1) или 252

Маленькие

автобусы

x

y

xy или 252

Работу можно организовать в группах, или, используя подводящий диалог. По ходу диалога заполняется таблица.

– Какие данные мы можем использовать из условия задачи? (В одном большом автобусе на 6 человек больше, чем в одном маленьком)

– Как это условие записать на математическом языке? (Количество людей в маленьком автобусе обозначить за x, тогда в большом автобусе ехало x + 6 человек).

Учащиеся могут рассуждать и по-другому: обозначим количество людей в большом автобусе x, тогда в маленький автобус помещается x – 6 человек.

– Как связано количество человек в маленьком автобусе с их количеством? (Никак не связано).

– Как же нам перевести на математический язык, сколько было маленьких автобусов? (Надо количество маленьких автобусов обозначить другой буквой, например y, тогда количество больших автобусов на 1 меньше, т.е. y – 1)

Учащиеся могут предложить принять за y количество больших автобусов, тогда количество маленьких автобусов будет равно y + 1.

– Как найти, сколько человек поехало на экскурсию на маленьких автобуса или на больших автобусах? (Надо количество людей в одном автобусе умножить на количество автобусов).

– Составьте математическую модель для решения задачи. (Учащиеся проговаривают два уравнения, которые являются моделью задачи, учитель записывает эти уравнения друг под другом)

xy = 252    или xy = 252

(x + 6)(y - 1) = 252    (x - 6)(y + 1) = 252

Можно проговорить о возможности слева поставить фигурную скобку, тем самым, показывая, что эти два уравнения являются одной моделью данной задачи.

– В чём отличие перевода данной задачи от перевода, которые вы делали на прошлом уроке и дома? (В этой задаче две переменные и два уравнения).

– Запишите перевод таких задач на математический язык, вводя буквенные обозначения.

xy = с

(x + a)(y + b) = с

– Можно для решения таких задач использовать, составленный алгоритм перевода условия задачи на математический язык? (Необходимо ввести уточнение)

1. Прочитай внимательно условие задачи.

2. Одну или две неизвестных величины обозначь любыми буквами латинского алфавита.

3. Составь и заполни схему по условию задачи (таблицу).

  1.  Составь математическую модель по условию задачи.

5. Первичное закрепление во внешней речи.

№ 116 (3)

Ученик у доски.

Цена одной тетради (в руб.)

Количество тетрадей

Стоимость покупки (в руб.)

Тетради в клетку

x + 400

8

y + 1600 или 8(x + 400)

Тетради в линейку

x

10

y или 10x

y = 10x

y + 1600 = 8(x + 400)

Возможны и другие варианты.

№ 116 (2) – работа в парах.

Длина (в см)

Ширина (в см)

Площадь (в см2)

Первый прямоугольник

32

x

y + 46 или 32x

Второй прямоугольник

15

x + 6

y или 15(x + 6)

y + 46 = 32x

y = 15(x + 6)

Возможны другие варианты.

6. Самостоятельная работа с самопроверкой по эталону.

№ 116 (1)

Эталон.

1 вариант.

Длина (в м)

Ширина (в м)

Площадь (в м2)

Первый прямоугольник

x + 4

y - 2

(x + 4)(y – 2) или 70

Второй прямоугольник

x

y

xy или 70

(x + 4)(y – 2) = 70

xy = 70

2 вариант.

Длина (в м)

Ширина (в м)

Площадь (в м2)

Первый прямоугольник

x

y

xy или 70

Второй прямоугольник

x - 4

y + 2

(x – 4)(y + 2) или 70

(x - 4)(y + 2) = 70

xy = 70

После самопроверки проводится анализ и исправление, допущенных ошибок.

7. Включение в систему знаний и повторение.

№ 116 (5)

Производительность

Время

Работа

По плану

x

8

y или 8x

В действительности

x + 2

7

y или 7(x + 2)

y = 8x

y = 7(x + 2)

Другой вариант: 8x = 7(x + 2)

№ 122, 123

№ 122.

Все линии замкнутые. В первой группе замкнутые линии без пересечений. А во второй с самопересечениями.

№ 123.

A = {a, c, e, f, k, m}

B = {b, d}

C = {a, b, e, k}

D = {a, k}

E = {k}

F = {e, f}

K = {a, c, k, c, d, m}

D и A; D и C; E и A; E и C; E и D; F и A; E и K.

8. Рефлексия деятельности.

– Что нового вы узнали сегодня на уроке? (Математической моделью может быть два уравнения с двумя переменными, построенное с использование формулы произведения).

– Что нам помогало выполнять задания? (Таблица, построенный алгоритм)

– Проанализируйте и оцените свою работу на уроке.

Для анализа можно предложить перечень вопросов аналогичных вопросам, предложенным на уроках по теме: «Значение выражения».

Домашнее задание: 1.2.1 (задача 4); №№ 124; 125 (один на выбор); 126; 127*


Данной работой Вы можете всегда поделиться с другими людьми, они вам буду только благодарны!!!
Кнопки "поделиться работой":

 

Подобные работы

166. Эмотивность и перевод: особенности языковой передачи эмоций при художественном переводе с английского языка на русский 241.63 KB
  Выражение эмоционального состояния. Произведения англоязычных писателей второй половины XX – начала XXI века. Среди типичных синтаксических средств эмотивности. Феномен эмотивности представляется малоизученным с точки зрения контрастивной (или сравнительной) лингвистики.
381. ИНТЕРТЕКСТУАЛЬНЫЕ СВЯЗИ В ХУДОЖЕСТВЕННОМ ТЕКСТЕ В СОПОСТАВИТЕЛЬНО-ПЕРЕВОДОВЕДЧЕСКОМ АСПЕКТЕ 358.81 KB
  Изучение культурного и национально-культурного компонента единиц художественного текста в сопоставительно-переводоведческом аспекте является одним из приоритетных направлений современного переводоведения.
447. Лексическая типология оригинальных и переводных текстов: на материале поэтических произведений Дж.М. Хопкинса 304.48 KB
  Лингвистический подход в настоящее время является общепризнанным и подтвержден многочисленными успешными переводами на практике, а также весьма убедительными данными научных исследований.
1321. Точка зрения в нарративе (на материале сопоставительного анализа современных русских коротких рассказов и их переводов на немецкий язык) 340.07 KB
  Целью работы является описание модели поэтической и лингвистической структуры ТЗ современного русского нарратива и выявление влияния переводческих трансформаций на ее выражение.
1390. Лингвистические аспекты теории перевода 1.89 MB
  Р. Якобсон О лингвистических аспектах перевода. М. А.К.Хэллидей Сопоставление языков. Основы теории закономерных соответствий. Грамматические трансформации и перевод некоторых синтаксических конструкций. К вопросу о типах межъязыковых лексических соответствий. П. Рикер Парадигма перевода.
1410. Взаимодействие языков и культур в переводческом пространстве: Гештальт-синергетический подход 23.71 MB
  Методологические основы гештальт-синергетического исследования взаимодействия языков и культур. Теоретические основы исследования переводческого пространства. Гипотеза о формировании и динамическом развитии переводческого пространства.
1440. Лингвопереводческие концепции американских переводоведов второй половины ХХ-начала ХХІ века 19.04 MB
  Перевод как один из древнейших видов человеческой деятельности, его роль в развитии социума, особая роль лингвопереводческих концепций Ю.А. Найды в развитии теории и практики межъязыковой коммуникации в США. Предпосылки развития генеративной лингвистики, формальная и динамическая эквивалентность, роль рецептора перевода.
1469. ЖАНРОВО-КУЛЬТУРНАЯ СПЕЦИФИКА РУКОВОДСТВ ПО ЭКСПЛУАТАЦИИ БЫТОВЫХ ПРИБОРОВ. АСПЕКТЫ ПЕРЕВОДА 328.15 KB
  Цель исследования заключается в разработке технологии перевода, основанной на результатах сопоставительного изучения жанровых особенностей русскоязычных и англоязычных руководств по эксплуатации с точки зрения организации и реализации макроструктуры текстов данного жанра.
1779. ПРАГМАТИЧЕСКИЙ АСПЕКТ ПЕРЕВОДОВ АНТИЧНЫХ АВТОРОВ. на материале ранних английских переводов латинского сочинения Боэция Об утешении философией 1.37 MB
  Лингвистическая прагматика в парадигме языкознания и теории перевода. Лингвокультурологический аспект английских переводов античных латинских текстов. Прагматический аспект ранних английских переводов латинского сочинения Боэция Об утешении философией. Перевод как особый вид литературного творчества эпохи английского Ренессанса.
1834. Отстранение в аспекте сопоставительной стилистики и его передача в переводе (на материале английского и русского языков) 1.56 MB
  Концепция остранения у отечественных и зарубежных исследователей (психология, филология, переводоведение). Психологический подход к остранению. Выделение подразумеваемого и наличествующего понятий. Плеонастические определения. Остранение и авторская позиция. Характерные контексты.