23745

Делимость произведения

Конспект урока

Математика и математический анализ

Что означает что число а делится на число b Это означает что существует такое число с которое при умножении на b дает а. И что Можно заменить число 16 произведением 4 и 4 и получится произведение 4 4 а. Если ктолибо из учащихся по аналогии с предыдущим заданием верно найдет ответ последнего примера число 555 то учитель просит его обосновать как выполнены действия. А как можно разделить произведение на число Разделить один множитель а потом полученный результат умножить на второй множитель.

Русский

2013-08-05

48.5 KB

17 чел.

Вариант конспекта урока по математике (5-6 класс)

для апробации на экспериментальных

площадках ассоциации «Школа 2000…»

Тема: “Делимость произведения”.

Тип урока: “открытия” нового знания.

Основные цели: 

1) Формировать способность к выводу, обоснованию и использованию свойства делимости произведения.

2) Повторить и закрепить понятие простого и составного чисел; различные способы нахождения НОК и НОД.

  1.  Самоопределение к деятельности (организационный момент).

– Здравствуйте ребята! Сегодня мы продолжим работать над делимостью чисел.

  1.  Актуализация знаний и фиксация затруднения в деятельности.

2.1. – Что означает, что число а делится на число b? (– Это означает, что существует такое число с, которое при умножении на b дает а.)

– Запишите соответствующее равенство. (а = b · с.)

  1.  – Пользуясь определением, назовите делители произведений 2 · а, 4 · а, 8 · а. (– Делители первого произведения – 2 и а, второго – 4 и а, третьего – 8 и а.)

– Верно –те множители, которые составляют произведение.

– А какое выражение следующее? (16 · а.)

– Почему? (– Первый множитель увеличивается в 2 раза, а второй не изменяется.)

– Что происходит с произведением? (– Увеличивается в 2 раза.)

– Докажите.

При ответе на этот вопрос учащиеся могут, либо сослаться на известное им свойство – если один из множителей увеличивается в несколько раз, то и все произведение увеличивается во столько же раз, либо представить 16 в виде произведения

2 и 8.

16 · а= (2 · 8) · а= 2 · (8 · а).

– Какое свойство произведения вы здесь использовали? (– Сочетательное.)

– А какие свойства еще знаете? (– Переместительное, распределительное.)

– Какие делители есть у произведения 16 · а? (16, а, 2, 8, 4.)

– Откуда вы взяли 4? (– 16 делится на 4.)

– И что? (– Можно заменить число 16 произведением 4 и 4, и получится произведение 4 · 4 · а.)

2.3. Математический диктант.

Учащиеся записывают в тетрадь только ответы.

– Найдите устно частное от деления на 7:

1) 63; 2) 707;  3) 7 · 48; 4) 35 · 111. (9, 101, 48, ?)

При проверке математического диктанта фиксируется затруднение в решении последнего примера.

3. Выявление причин затруднения и постановка цели деятельности (постановка учебной задачи).

Если кто-либо из учащихся по аналогии с предыдущим заданием верно найдет ответ последнего примера – число 555, то учитель просит его обосновать, как выполнены действия. Обоснование проводится аналогично пункту 2.2. Если учащиеся не смогут найти ответ, то обсуждение проводится фронтально под руководством учителя:

35 · 111 = 7 · 5 · 111, поэтому при делении произведения на 7 частное равно:

5 · 111 = 555.

Затем учитель предлагает учащимся обобщить наблюдаемое свойство:

– Потребовалось ли для ответа на вопрос вычислять значение произведения  35 · 111? (– Нет.)

– А как можно разделить произведение на число? (– Разделить один множитель, а потом полученный результат умножить на второй множитель.)

– Так легче считать? (– Да.)

– Попробуйте на основании рассмотренного примера сформулировать гипотезу о делимости произведения на число. (– Если один из множителей делится на число, то и все произведение делится на это число.)

– Рассмотренным примером мы доказали это свойство? (– Нет.)

– Почему? (– Свойство – это высказывание общего вида.)

– Что же нам нужно сделать, чтобы использовать это свойство для любого примера? (– Доказать его в общем виде.)

– Попробуйте сформулировать тему сегодняшнего урока. (– Делимость произведения.)

– Какая цель урока? (– Доказать в общем виде свойство делимости произведения на число.)

Учитель записывает тему урока на доске, а учащиеся – в тетради.

  1.  Построение проекта выхода из затруднения ("открытие" нового знания).

4.1.– Итак, сформулируйте еще раз свойство, которое нам надо доказать. (– Если один из множителей делится на число, то и все произведение делится на это число.)

– Каким методом удобно воспользоваться для его доказательства? Какие методы доказательства высказываний общего вида вы знаете? (– Перебор вариантов, метод проб и ошибок, введение буквенных обозначений.)

– Какой метод, по вашему мнению, подойдет здесь? (– Использование буквенных обозначений.)

– Введите обозначения. (– Например, множители – a и b, а делитель – c.)

– Что мы предполагаем? (– Мы предполагаем, что один из множителей делится на число c.)

– Какой из множителей? (– Например, a делится на c.)

– Как это записать на математическом языке? (а = kc.)

– Что нам нужно доказать? (– Что и все произведение a · b разделится на на число c.)

4.2. Учащимся предлагается в течение 2–3 минут в группах провести обсуждение и найти доказательство. Затем, на доске представители групп выписывают свои варианты обоснования, которые сопоставляются между собой, и выводится согласованный общий вариант:

a · b= (kc) · b= c · (kb).

– Итак, что мы доказали? (– Если один из множителей делится на число, то и все произведение делится на это число.)

– Запишите это свойство делимости на математическом языке.

Учащиеся предлагают варианты, в результате появляется запись типа:

а  b или b  с             а  с

– На какие вопросы мы сможем теперь быстро дать ответ? (– Делится ли произведение на число; при делении произведения – не вычислять значение всего произведения, а разделить лишь один множитель.)

На доске выставляется несколько карточек с произведениями:

794 · 299  6851 · 999  2699 · 5009

– Известно, что одно из данных произведений кратно 9, а остальные – нет. Не выполняя вычислений, определите, какое из них делится на 9? (6851 · 999 делится на 9, так как множитель 999 делится на 9.)

Учитель переворачивает карточку, на обратной стороне которой написано: "Молодцы!".

– Откройте учебники стр. 102 и прочтите свойство делимости произведения.

5. Первичное закрепление во внешней речи.

5.1. – Выполним устно № 452 (4, 5, 6), обосновывая свои выводы. (Например, произведение делится на 15, так как множитель 45 делится на 15 и т.д.)

5.2. В № 456 расскажите, как легче вычислить значение частного при делении на 9 произведения. (В (а) –28 умножить на 35; в (б) – 452 умножить на 1600; в (в) – 76 умножить на 512 и результат умножить на 40 и т.д.)

6. Самостоятельная работа с самопроверкой в классе по эталону.

6.1. Учащиеся выполняют самостоятельно задания:

1) № 452 (1, 2, 3) – ставят в тетрадях "+", если произведение делится на данное число, и "–", если не делится.

2) № 455 – выписывают делители произведения.

Дополнительное задание: № 461.

После выполнения заданий учащиеся сверяют его с образцом, исправляют ошибки. После их самопроверки проводится анализ допущенных ошибок.

7. Включение в систему знаний и повторение

7.1. Разбор дополнительного задания № 461, выполненного учащимися: Д, Р, И, Н, Щ, Е. Композитор ЩЕДРИН.

7.2. Работа в группах.

Каждая группа класса получает задание на карточке, одного из 2 вариантов и выполняет его в течение 5 минут.

Вариант I   Вариант II

№ 458 (а, в, д),   № 458 (а, в, д),

№ 465 (1)   № 465 (2)

После выполнения задания проводится его разбор-соревнование. Выступают представители групп.

№ 458 (устно).

а) Число, следующее за простым, может быть как простым так и составным, например, 3 и 8.

б) Число, следующее за составным, может быть как простым так и составным, например, 5 и 15.

в) Число, предшествующее простому числу, может быть как 1, так и простым и составным числом, например, 2 и 6.

г) Число, предшествующее составному числу, может быть как простым так и составным, например, 3 и 8.

д) Сумма двух простых чисел может быть только составным числом, так как она является четной и отлична от 2.

е) Сумма двух составных чисел может быть как простым так и составным числом, например: 4 + 9 = 13,  6 + 8 = 14.

№ 465.

1) с – (а + d) · 7; 2) с + (а + d) · 7.

8. рефлексия деятельности (итог урока).

– Что нового мы узнали на уроке?

– Какой метод нам позволил вывести свойство делимости произведения?

– Кого вы можете отметить?

– Оцените свою работу на уроке. (Учащимся предлагается заполнить индивидуальную таблицу.)

Этап урока

Выполнил

Исправил

Вывод свойства

№ 452

№ 456

Самостоятельная работа

№ 461

№ 458

№ 465

9. Домашнее задание. 

П. 2.2.1 (до второго свойства); № 475; № 483; № 484 (любую на выбор).

Дополнительное задание – № 485.

4


 

А также другие работы, которые могут Вас заинтересовать

52202. Робототехника 200 KB
  Тексты: Robotics Technicl Prmeters of Robots Лексика re область зона rtificil искусственный ttchment прикрепление xis pl. Переведите следующие словосочетания на русский язык: set of instructions; the bility of extreme decentrliztion of informtion nd dt; typicl pplictions of robots; investigtions into new types of robots; number of discrete voltge levels; little mount of different instructions; n ctive re of reserch; stories of rtificil helpers; mss production of consumer nd industril goods; high...
52203. Космонавтика 192 KB
  Тексты: History of spce explortion in the 20th Century Explortion of the Moon Лексика bord на борту lone единственно только ssumption допущение предположение being существо body тело celestil небесный crew команда экипаж durtion длительность Erth Земля experience опыт fmous знаменитый fr далеко flight полет hlf половина hrd твердый het тепло honor честь kind тип вид mgnificent величественный member член команды элемент конструкции milestone веха этап...
52204. Ракетостроение 206.5 KB
  Выражение to be going to Тексты: Spce Sttions Spcecrft Modifictions nd their Subsystems Лексика lso также тоже prt на части pproprite соответствующий verge средний cpcity способность; мощность closed закрытый замкнутый direction направление during в течение entry вход вхождение environment окружающая среда forwrd вперед frequently часто ground земля; основание height высота lunch vehicle ракетаноситель long term shortterm долгосрочный краткосрочный nked зд....