23750

Делители и кратные

Конспект урока

Математика и математический анализ

Основные цели: – формировать способность нового понятия на примере введения понятий делителя числа НОД чисел; – формировать способность построения нового алгоритма на примере нахождения делителей чисел общих делителей НОД; – тренировать способность нахождения парных делителей общих делителей разными способами НОД разными способами. 1 № 385 аб – Чем является числа 60 16 и т. – Какая разница между числами являющимися делителями в первой группе примеров и во второй Возникает затруднение при ответе на поставленный вопрос. – Как...

Русский

2013-08-05

59 KB

68 чел.

Вариант конспекта урока по математике (5-6 класс)

для апробации на экспериментальных

площадках ассоциации «Школа 2000…»

Тема урока: «Делители и кратные».

Тип урока: «открытие» детьми нового знания.

Урок составил: Зайцева Т.В., уч. школы № 1159, г. Москвы.

Основные цели: – формировать способность нового понятия на примере введения понятий делителя числа, НОД чисел;

– формировать способность построения нового алгоритма на примере нахождения делителей чисел, общих делителей, НОД;

– тренировать способность нахождения парных делителей, общих делителей разными способами, НОД разными способами.

1. Самоопределение к деятельности (организационный момент).

– Доброе утро, ребята! Вы замечательно справились с работой на прошлом уроке, и я уверена, что сегодняшний урок и последующие принесут нам новые открытия и много радости от общения друг с другом. Сегодня мы вспомним то, с чем познакомились в начальной школе и конечно узнаем много нового.

2. Актуализация знаний и фиксирование затруднения в индивидуальной деятельности.

1) № 385 (а,б)

– Чем является числа 60, 16, и т.д.? (Делителями).

2) На доске записаны примеры:  33: 11

     20: 5

     8: 4

     31: 15

     50: 25

     5: 1

     12:7

     45: 10

     15: 5

– Найдите лишние примеры. (Учащиеся предлагают разные варианты со своими объяснениями, среди всех названных вариантов следует выбрать тот, где лишними называются те примеры, в которых первое число не делится на второе: 31: 15; 12: 7; 45: 10).

– Какая, разница между числами, являющимися делителями в первой группе примеров и во второй? (Возникает затруднение при ответе на поставленный вопрос).

3. Выявление причин затруднения и постановка цели деятельности (постановка учебной задачи).

– Почему вам трудно ответить на вопрос? (Во всех примерах число на которое делим

является делителем, но в одних примерах мы можем выполнить деление, а в других нет).

– Какая, цель нашего урока? (Уточнить название делителя для чисел, на которые данное число делится).

– Как, можно сформулировать тему урока? (Делители).

– Хорошо! Но мы немножко уточним тему в процессе урока.

4. Построение проекта выхода из затруднения («открытие» детьми нового знания).

– Чем вы пользовались для того, чтобы определить делится одно число на другое или нет? (Определением делимости).

– Почему 33 делится на 11? (Можно найти число (3) при умножении его на 11 получается 33)

– Вспомним определение делимости. (Число a делится на число b, если существует такое число c, что выполняется равенство a= bc). На доске появляется запись формулировки данного определения.

– Как, называются числа a, b, c? (Делимое, делитель, частное).

– Можно сказать, что число 11 делитель числа 33? (Можно, т.к. 33 делится на 11).

– Будет ли число 15 делителем числа 35? (Нет, т.к. 35 не делится на 15).

– Какое же, число мы будем называть делителем данного числа? (Если данное число делится на это число).

– Можно назвать, чем отличаются термины: делитель и делитель числа? (Делитель – это название компонента действия деления, а делитель числа – это число на которое делится данное число).

– На основе определения делимости дайте определение делитель числа a.(Число b является делителем числа a, если существует число c, такое что выполняется равенство a= bc).

5. Первичное закрепление во внешней речи.

№ 363

  1.  Делитель не может быть больше самого числа, т.к. на него мы делим.
  2.  a 1= a
  3.  1 является делителем всех чисел.
  4.  Один делитель может быть (1), два делителя (2), три делителя (4), может быть больше двух делителей.

№ 365 (а)

Сначала отвечаем на вопросы.

Можно использовать метод перебора: D (60)= {1, 2, 3, 4, 5, 6. 10, 12, 15, 20, 30, 60}

– Как можно ускорить процесс нахождения делителей числа, если взять во внимание определение делимости? (Определение на доске).

Можно использовать парность делителей (Если число a представлено в виде bc – это значит, что b и c делители числа a).

6. Самостоятельная работа с самопроверкой по эталону.

– Найдите делители чисел 12 и 81

D (12)= {1, 2, 3, 4, 6, 12}; D (81)= {1, 3, 9, 27, 81}

5. Первичное закрепление во внешней речи.

– Найдите все общие делители для чисел 12 81.

D (12; 81)= {1, 3}

– Подчеркните наибольший общий делитель. (3)

На доске: НОД (12, 81)= 3

– Может ли НОД быть больше чисел, для которых его находим? (Нет).

– Как, можно ускорить нахождение НОД? (Можно найти делители только наименьшего числа, и начиная с наибольшего проверять, являются ли они делителями второго числа).

– Используя предложенный алгоритм, выполните № 367 (г).

НОД(6, 42, 81)

D (6)= {1, 2, 3, 6}

81 не делится на 6; 81 делится на 3; 42 делится на 3.

НОД(6, 42, 81)= 3

6. Самостоятельная работа с самопроверкой по эталону.

№ 369 (5)

НОД (8, 12, 42)   D (8)= {1, 2, 4, 8}

42 не делится на 8; 42 не делится на 4; 42 делится на 2; 12 делится на 2.

НОД (8, 12, 42)= 2

7. Включение в систему знаний и повторение.

№ 384 (3) (повторение диаграммы Венна)

D (60)= {1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60}

D (12)= {1, 2, 3, 4, 6, 12}

D (36)= {1, 2, 3, 4, 6, 9, 12, 18, 36}

D (180)= {1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 30, 36, 45, 60, 90, 180}

(рисунок).

№ 393.

а) 12мин 54с+ 4мин 32с- 11мин 30с= 5мин 56с

б) 5ч 18мин- 2ч 45мин+ 6ч 27мин= 9ч

в) 8мин 34с 9= 72мин 306с= 77мин 6с

г) 4ч 16мин5= 20ч 80мин= 21ч 20мин

д) 23мин 28с: 4= 1408с: 4= 352с= 5мин 52с

е) 7сут. 2ч: 17= 170ч: 17= 10ч

8. Рефлексия деятельности (итог урока)

Ответьте на вопросы:

  1.  Данная тема мне понятна.
  2.  Я хорошо понял определение____________________________________________
  3.  Я знаю, как пользоваться алгоритмом_____________________________________
  4.  Я сумею найти________________________________________________________
  5.  В самостоятельной работе у меня всё получилось___________________________
  6.  Я понял алгоритм __________________________но в самостоятельной работе на уроке допустил ошибки при счёте________________________________________
  7.  Я доволен своей работой на уроке________________________________________

Домашнее задание: п.2.1.1.(только о делителях), №№ 401 (1, 2), 403, 406, 411*.


Вариант конспекта урока по математике (5-6 класс)

для апробации на экспериментальных

площадках ассоциации «Школа 2000…»

Тема урока: «Делители и кратные».

Тип урока: «открытие» детьми нового знания.

Урок составил: Зайцева Т.В., уч. школы № 1159, г. Москвы.

Основные цели: – формировать способность нового понятия на примере введения понятий кратного числа, НОК чисел;

– формировать способность построения нового алгоритма на примере нахождения кратных чисел, общих кратных, НОК;

– тренировать способность нахождения кратных чисел, общих кратных разными способами, НОК разными способами.

1. Самоопределение к деятельности (организационный момент).

– Доброе утро, ребята! Вы замечательно справились с работой на прошлом уроке, и я уверена, что сегодняшний урок принесёт нам новые открытия и много радости от общения друг с другом. Сегодня мы продолжим работать с делителями, и будем вспоминать то, с чем познакомились в начальной школе и конечно узнаем много нового.

2. Актуализация знаний и фиксирование затруднения в индивидуальной деятельности.

  1.  № 370

Делитель для числа а: 5

Делитель для числа b: 2, 5, 10

Делитель для числа с: 5

Делитель для числа d: 2

– Как проверить, что число 10 является делителем числа b? (Надо найти значение произведения: оно равно 70, а 70 делится на 10).

– Запишите это равенство в тетрадь. (70: 10= 7).

– Как называется число 70? (Делимое).

– Как по–другому можно назвать число 70?

3. Выявление причин затруднения и постановка цели деятельности (постановка учебной задачи).

– Какая, цель нашего урока? (Вспомнить другое название делимого).

4. Построение проекта выхода из затруднения («открытие» детьми нового знания).

– Кто может вспомнить, как в начальной школе мы называли число, которое делится на данное число? (Кратное).

– Попробуйте сформулировать определение кратного числа a.(Число, кратное числу a это такое число, которое делится на a).

– Может ли кратное быть меньше самого числа? (Нет, не может, т.к. это кратное должно делится на число).

– Является ли число кратным самому себе? Если да, то почему? (Да, является, т.к. верно равенство: a: a= 1).

– Сколько кратных у числа? (Бесконечно много).

5. Первичное закрепление во внешней речи.

№ 373 (можно организовать работу по группам)

К (4)= {4, 8, 12, 14,…}

К (5)= {5, 10, 15, 20,…}

К (14)= {14, 28, 42, 56,…}

К (16)= {16, 32, 48, 64,…}

К (21)= {21, 42, 63, 84,…}

В процессе выполнения задания можно задать вопрос: как, ускорить процесс нахождения кратных чисел? (Что бы найти следующее кратное можно прибавлять к предыдущему число, кратное, которого ищем, или умножать само число на 2, 2, 3 и т.д.).

6. Самостоятельная работа с самопроверкой по эталону.

Найдите по пять кратных для чисел: 6, 7, 12 и 32.

К (6)= {6, 12, 18, 24, 30}

К (7)= {7, 14, 21, 28, 35}

К (12)= {12, 24, 36, 48, 60}

К (32)= {32, 64, 96, 128, 160}

5. Первичное закрепление во внешней речи.

№ 374 (а)

К (4, 5)= {20, 40, 60,…}, наименьший 20

– Что, надо учесть для поиска общих кратных? (Что общие кратные не должны быть меньше большего числа и быть кратными меньшего числа).

– Как, можно ускорить процесс нахождения общих кратных? (Можно искать кратные большего числа и проверять являются они кратными второго числа).

– Какое, кратное нам есть смысл искать? (Наименьшее кратное, т.к. наибольшего кратного найти не сможем, кратных бесконечно много).

– Как, найти НОК чисел? (Надо искать кратные наибольшего числа и начиная с наименьшего числа проверять, является оно кратным второго числа).

– Найдите, используя выведенный алгоритм НОК для чисел 14 и 21 (Можно использовать выполненное задание из № 373).

К (21)= {21, 42, 63, 84, 105,…}

21 не кратно 14, 42 кратно 14, значит НОК (14, 21)= 42.

6. Самостоятельная работа с самопроверкой по эталону.

№ 374 (б)

К (16)= {16, 32, 48,…}

16 кратно 4, значит НОК (4, 16)= 16

После проверки можно задать вопрос: «Можно было бы сразу дать ответ?» (Да, т.к. видно сразу, что само число16 является кратным второго числа 4 и можно было не находить кратные числа 16).

7. Включение в систему знаний и повторение.

№ 381

№ 395 (работу можно организовать по группам).

8. Рефлексия деятельности (итог урока)

Ответьте на вопросы:

  1.  Данная тема мне понятна.
  2.  Я хорошо понял определение____________________________________________
  3.  Я знаю, как пользоваться алгоритмом_____________________________________
  4.  Я сумею найти________________________________________________________
  5.  В самостоятельной работе у меня всё получилось___________________________
  6.  Я понял алгоритм __________________________но в самостоятельной работе на уроке допустил ошибки при счёте________________________________________
  7.  Я доволен своей работой на уроке________________________________________

Домашнее задание: п.2.1.1., №№ 402 (1, 2), 404, 407, 412*.

5


 

А также другие работы, которые могут Вас заинтересовать

12236. Определить растворимости и произведения растворимости труднорастворимых солей 33.51 KB
  Цель работы: определить растворимости и произведения растворимости труднорастворимых солей. Рабочая формула где: S растворимость. предельные эквивалентные электропроводности ионов удельная электропроводность раствора Таблица 1 Дан...
12237. Определение константы скорости инверсии тростникового сахара 144 KB
  Определение константы скорости инверсии тростникового сахара Цель работы: ознакомиться оптическим методом изучения кинетики реакции; определить порядок реакции по сахару и катализатору; определить среднюю константу скорости рассчитать ошибки в измерениях. Принци
12238. Определение температурного коэффициента электропроводности 30.22 KB
  Измерение электропроводности электролитов различной концентрации и определение температурного коэффициента электропроводности Цель: установить зависимость удельной и эквивалентной электропроводности электролита от концентрации и те
12239. Определить pH и буферную емкость ацетатных буферных растворов 40.44 KB
  Цель работы: определить pH и буферную емкость ацетатных буферных растворов. Исследуемая цепь Pt CHхингидрон KClнасHg2Cl2 Hg Рабочие формулы где: – потенциал хингидронового электрода – потенциал каломельного электрода Таблица 1 Данные из...
12240. Исследование влияния параметров схемы на токовую и тепловую загрузку тиристоров в управляемом выпрямителе 12.43 MB
  Курс Силовые полупроводниковые приборы. Лабораторная работа 2. Тема: исследование влияния параметров схемы на токовую и тепловую загрузку тиристоров в управляемом выпрямителе. Схема: мостовая схема выпрямления однофазного тока при активной и активноиндуктивной н
12241. Вертикально связанные квантовые точки в полупроводниках 334.42 KB
  Квантовые точки, используемые на сегодняшнем рынке – это наноразмерные полупроводники, которые изменяют цвет в зависимости от изменений температуры. Точки имеют два слоя – внутреннее ядро селенида кадмия и внешняя оболочка сульфида цинка. Так как квантовые точки биосовместимы, учёные используют их в качестве альтернативы флоуресцентным красителям, чтобы метить и отслеживать клеточные компоненты
12242. Определение рН раствора с помощью хингидронного электрода 107.5 KB
  Определение рН раствора с помощью хингидронного электрода Цель работы: определение рН и буферной емкости ацетатных буферных растворов. Принцип метода: потенциометрическое определение производят измеряя ЭДС гальванического элемента во втором одни из электродов во
12243. Финансово-хозяйственные операции по отражению объекта учета 99.48 KB
  Я ставлю перед собой цель рассказать, как видеться учет доходов на предприятии. Предприятия отличаются отрасли, производством, численностью, правовой формой и так далее, но я рассмотрю общую систему учета доходов предприятия...
12244. Дизъюнктивные нарушения 659.91 KB
  Вернемся к основной теме. Как уже было сказано дизъюнктивные нарушения — это разрыв пластов, горных пород которые образуются, при воздействии двух разнонаправленных сил на слой горных пород, слой сначала изгибается, а затем – разрывается.