23758

Открытие нового знания

Конспект урока

Математика и математический анализ

– Здравствуйте ребята – Какая основная задача стояла перед нами на прошлых уроках Мы вывели новый способ нахождения НОК используя разложение чисел на простые множители. – Сегодня на уроке мы продолжим работать над нахождением НОК чисел и рассмотрим нахождение НОК разных чисел. – Найдите НОК 15 24: а составляя множества К 15 и К 24; б перебирая кратные 24; в с помощью разложения чисел 15 и 24 на простые множители.

Русский

2013-08-05

38 KB

1 чел.

Вариант конспекта урока по математике (5-6 класс)

для апробации на экспериментальных

площадках ассоциации «Школа 2000…»

Тема: «Наименьшее общее кратное»

Тип урока: «Открытие нового знания»

Основные цели: тренировать способность к практическому использованию алгоритма нахождения НОК на основе разложения чисел на простые множители; исследовать частные случаи нахождения НОК, когда НОК (а, b) = а · b,  НОК (а, b) = b; повторить и закрепить понятие взаимно простых чисел, преобразование дробей и действия со смешанными числами, решение задач на дроби.

  1.  Самоопределение к деятельности.

– Здравствуйте, ребята!

– Какая основная задача стояла перед нами на прошлых уроках? (Мы вывели новый способ нахождения НОК, используя разложение чисел на простые множители).

– Сегодня на уроке мы продолжим работать над нахождением НОК чисел и рассмотрим нахождение НОК разных чисел.

  1.  Актуализация знаний и фиксация затруднения в деятельности.

1.Решите уравнение:

 (х = 24.)

– Чему равна сумма цифр в полученном числе? (6.)

– Перечислите в порядке возрастания все двузначные числа, сумма цифр в которых равна 6. (15, 24, 33, 42, 51, 60.)

– Какие из чисел данного ряда являются простыми? (Простых чисел в данном ряду нет: все они кратны 3.)

– Найдите НОК (15, 24): а) составляя множества К (15) и К (24); б) перебирая кратные 24; в) с помощью разложения чисел 15 и 24 на простые множители. (НОК (15, 24) = 120.)

– В каких случаях удобно использовать каждый из этих способов?

2. Индивидуальное задание.

– Устно разложите данные числа на простые множители и найдите их наименьшее общее кратное: а) НОК (15, 90); б) НОК (12, 25).

– Установите, в чем особенность каждого случая, и сделайте вывод.

  1.  Выявление причин затруднения и постановка цели деятельности.

На задание может потребоваться много времени.

– Почему вам трудно было выполнить задание? (Устно сложно раскладывать числа на простые множители).

– А можно было бы найти НОК чисел другим способом и, что надо ля этого сделать? (Надо сначала проанализировать числа).

– Как можно было бы определить цель нашего урока? (Нахождение НОК, используя анализ данных чисел).

  1.  Построение проекта выхода из затруднения.

– Что интересного вы можете сказать о первой паре чисел? (Число 90 кратно числу 15, значит число 90 и есть НОК этих чисел).

– Сделайте обобщение. (Если одно из чисел кратно другим числам, то оно и есть их НОК).

На доске:

– Что вы можете сказать о второй паре чисел? (У них нет общих делителей).

– Как такие числа мы называли? (Взаимно простые числа).

– Используя алгоритм нахождения НОК, что мы должны будем делать? (Нам надо выписать наибольшее число: 25, домножить на недостающие множители, а это все простые множители числа 12, т.е. умножить на само число 12).

– Сделайте вывод, как найти НОК взаимно простых чисел. (Что бы найти НОК взаимно простых чисел надо найти их произведение).

На доске:

– Молодцы! А теперь посмотрим, как использовать наши наблюдения при выполнении заданий.

  1.  Первичное закрепление во внешней речи.

№ 692 (1 – 4)

№ 695

№ 693 (4)

18 = 2 3 3;  1001 = 7 13 11

НОД (18; 1001) = 1,  НОК (18; 1001) = 18 1001 = 18018.

  1.  Самостоятельная работа с самопроверкой по эталону.

№№ 692 (5; 6); 693 (1; 2).

Эталон.

№ 692

5) НОК (5; 102 030 405) = 102 030 405, т.к. оно кратно 5 по признаку делимости чисел на 5;

6) НОК (6; 300 200 100) = 300 200 100, т.к. оно кратно на 6 (чётное и сумма цифр делится на 3).

№ 693

1) 4 = 2 2;  125 = 5 5 5

НОД (4; 125) = 1; НОК (4; 125) = 4 125 = 500

2) 33 = 3 11;  1000 = 2 2 5 5

НОД (33; 1000) = 1  НОК (33; 1000) = 33 1000 = 33 000

– Учащиеся выполняют работу самостоятельно, проверяют по эталону, отмечают правильно выполненное задание знаком «+», здания, в которых допущены ошибки, отмечают знаком «?», ошибки анализируются и исправляются.

  1.  Включение в систему знаний и повторение.

№№ 696

  1.  704 не делится на 10 692.
  2.  Кратное по определению может быть равно числу или больше этого числа.

№ 706.

№ 708.

  1.  150 : 3 10 = 500 (м) – вся дистанция.
  2.  500 – 150 = 350 (м)

Ответ: спортсмен пробежал 350 м.

  1.  Рефлексия деятельности.

– Что интересного вы узнали на уроке? (Что если одно число кратно другому, то их НОК и есть наибольшее число, если числа взаимно простые, то их НОК равно их произведению).

– Что эти наблюдения нам дают? (Что находить НОК иногда можно, не раскладывая числа на простые множители).

– Проанализируйте свою работу на уроке.

Домашнее задание. п. 2.4.3 №№ 713 (два оставшихся); 714 (два оставшихся), 717 (2).

3


 

А также другие работы, которые могут Вас заинтересовать

48535. Методика навчання розв’язування складених арифметичних задач 90 KB
  Підготовча робота до ознайомлення учнів із складеною задачею; Ознайомлення із складеною задачею; Розвиток уявлень про структуру задачі; Прийоми розвитку уявлень про процес розв’язування задач; Розв’язування типових задач (на знаходження четвертого пропорційного, на пропорційне ділення, на знаходження числа за двома різницями, на знаходження середнього арифметичного та задач на рух). Розвиток умінь учнів розв’язувати складені задачі.
48537. Линии на плоскости и их уравнения. Прямая на плоскости. Различные формы уравнений прямой на плоскости. Угол между прямыми. Расстояние от точки до прямой 497.5 KB
  Уравнение Фху = 0 7.1 называется уравнением линии L если этому уравнению удовлетворяют координаты х и у любой точки лежащей на линии L и не удовлетворяют координаты ни одной точки не лежащей на линии L. х – а y – b = R уравнение окружности радиуса R с центром в точке b.3 уравнение...
48538. МАТЕМАТИЧЕСКИЙ АНАЛИЗ 613 KB
  Сложные и обратные функции. График функции. Основные элементарные функции. Предел функции в точке и на бесконечности.
48539. Производные и дифференциалы высших порядков, их свойства. Точки экстремума функции. Теоремы Ферма и Ролля 440 KB
  Точки экстремума функции. Продифференцировав эту функцию мы получим так называемую вторую производную или производную второго порядка функции fx. Производной nго порядка или nй производной от функции fx называется производная первого порядка от ее n1й производной. Найдем производную 3го порядка от функции y=x5x3x12.
48540. Валютное право 182.3 KB
  № 16ФЗ Об Особой экономической зоне в Калининградской области и о внесении изменений в некоторые законодательные акты Российской Федерации Валютные правоотношения и их виды. В теории права правоотношение рассматривается как сложная общественная связь включающая в себя следующие элементы: субъекты правоотношений носитель прав управомоченный и носитель обязанности правообязанный; В теории права субъекты правоотношений подразделяются на три вида: физические лица; юридические лица коммерческие и некоммерческие организации;...
48541. ЗАРОЖДЕНИЕ ЭКОНОМИЧЕСКОЙ НАУКИ 57 KB
  Они считали что приумножение богатства требует протекционистских мер по регулированию внешней торговли того чтобы поощрялся экспорт сдерживался импорт и всемерно поддерживалась национальная промышленность. Источником богатства меркантилисты считали неэквивалентный обмен в результате торговых взаимоотношений с другими государствами. Его труд посвящался проблеме преобразований в российской экономике направленных на преодоление бедности и преумножение богатства. Он считал что труд является источником богатства и в промышленности и в...
48542. Элементы автоматических устройств электрических систем 5.83 MB
  Сравнивает ток реле и ток уставки: Iр Iуст. Элемент воздействия выходные реле. ТЕМА: РЕЛЕ Реле – элемент сравнивающий входную величину с заданной уставкой. Элементарное реле имеет одну входную величину и может принимать два значения: 0 и1.
48543. МЕТАДАННЫЕ 608.79 KB
  Метаданные — это данные о данных, которые описывают характеристики объектов-носителей данных, способствуют обнаружению, идентификации, оценке и управлению этими данными, включают определения объектов, относящихся к данным, разработчикам, пользователям и средствам взаимодействия.