24

Метамофогенные и метаморфизованные месторождения

Научная статья

География, геология и геодезия

Метамофогенные и метаморфические месторождения различаются следующим образом. В первых перенос металлов происходит на многие сотни метров и километры, во вторых перераспределение металлов происходит в пределах ранее образованных рудных тел.

Русский

2012-05-26

50 KB

26 чел.

Метамофогенные и метаморфизованные месторождения

Процессы регионального и регионально-контактового метаморфизма сопровождаются неравномерным сжатием пород, зональным тепловым потоком, мобилизацией огромных объемов захороненных поровых, молекулярно-пленочных вод (в основном морского происхождения), ювенильных вод, связанных с дегазацией мантии и магматических очагов и «конституционной» воды, входящей в кристаллическую решетку минералов. Метамофогенные и метаморфические месторождения различаются следующим образом. В первых перенос металлов происходит на многие сотни метров и километры, во вторых перераспределение металлов происходит в пределах ранее образованных рудных тел.

С учетом того, что массовая доля поровой и конституционной воды в метаморфизуемых осадочных толщах достигает 10 %, нетрудно представить себе объем высвобождаемой воды лишь в 1 км3. Метаморфические процессы по своей физической сути эндотермические, идущие с поглощением тепла. Источником тепла являются потоки энергии и вещества из мантии, интрузивные очаги, процессы преобразования энергии природных электрических полей в тепловую. По-видимому, в общем энергетическом балансе весьма важная роль принадлежит процессам поглощения и перераспределения в недрах солнечной энергии.

В результате метаморфизма в недрах скапливается перегретая вода с температурой 200-700° , омывающая зерна минералов по межзерновым микротрещинам и порам. В случае, если метаморфизуемая порода имеет надкларковые концентрации металлов, есть возможность их относительно концентрированной мобилизации с последующим отложением. Наиболее активным и распространенным компонентом – мигрантом метаморфогенных растворов является кремнезем, при остывании растворов образуются многочисленные кварцевые жилы и прожилки.

В 1980-ые годы гипотеза гидротермально-метаморфогенного происхождения получила широкое развитие для объяснения происхождения многих металлов, в частности золота. Специальными исследованиями установлена закономерная приуроченность многих месторождений золота к изограде метаморфогенного биотита в терригенных толщах Северо-Востока, Восточной Сибири, Средней Азии. Такая приуроченность объясняется скачком температуры при первом появлении биотита на фоне серицит-хлоритового метаморфического парагенезиса с 300-350° до 400-450°, что вызывает заметное нарушение равновесия в геотермальных системах. С внешней стороны биотитовой изограды (в «предбиотитовой» зоне) сконцентрированы золото-кварцевые месторождения, а с внутренней – золото-сульфидные, золото-кварц-сульфидные. Такие месторождения наблюдаются на значительных удалениях от ближайших интрузий (от 2-4 км до 10-20 км и более), а иногда и в совсем амагматичных областях.

Иногда руды золото-кварцевых месторождений на контакте с интрузиями несут признаки термального  метаморфизма (Игуменовское месторождение на Колыме, где на жилы наложена скарноидная ассоциация – пироксен, эпидот, роговая обманка, биотит, а самородное золото претерпело заметное укрупнение – до образования крупных рудных самородков, пирит подвергся пирротинизации, антимонит частично превращен в самородную сурьму) – своеобразный природный металлургический передел, доказывающий догранитный  возраст рудных жил. Возникает вопрос, что за процесс сформировал их до внедрения гранитов. Очевидно, внедрению гранитов предшествовал зональный тепловой поток, с которым могло быть связано оруденение.

Объемная насыщенность метаморфизуемых терригенных пород агрессивными порово-трещинными растворами – реликтами захороненной морской воды и флюидами магматического происхождения, позволяет предположить электролитический механизм миграции и накопления части рудного вещества. Необходимый для такого способа миграции электрический потенциал может быть создан термоЭДС на метаморфических границах, со скачкообразным изменением температуры на сотни градусов, либо индуцирован движением растворов (электролитического проводника второго рода) через постоянное магнитное поле, созданное многочисленными зонами пирротинизации.

Обращает внимание сходство качественного состава золото-кварцевых месторождений и состава метаморфических парагенезисов терригенных пород зеленосланцевой фации. И те, и другие содержат кварц, хлорит, серицит, альбит, графит. Гидротермальные месторождения золота, а также урана, реже олова, которым приписывается метаморфический генезис (в частности, месторождение золота Сухой Лог), приурочены к крупным приразломным зонам смятия, секущим сульфидизированные толщи с высокими кларками концентрации этих металлов. Руды обычно имеют прожилково-вкрапленное строение, границы рудного тела определяются опробованием.

В мелких разрывных нарушениях, оперяющих и секущих региональные разломы, концентрируется золото, заимствованное из массы ранних окварцованных и пиритизированных тектонитов с образованием жильных тел золото-кварцевой формации. Наивысшие концентрации жильного золота характерны для участков сопряжения ранних метаморфических ассоциаций с поздними биотитовыми куполами, где происходит телескопирование разновременных структурно-морфологических типов золотого оруденения.

Сходное происхождение предполагается и для золоторудных объектов Авзянского района в Башкортостане.

В Якутии и Приморье известны месторождения олова в биотитизированных терригенных породах, не имеющие связи с интрузиями. Их полная отработка до выклинивания на глубину также не выявила гранитных «корней» оруденения. Для вмещающих пород местами устанавливаются высокие фоновые концентрации олова. Возможно, оруденение связано именно с неравномерным тепловым потоком, приводящим в движение ионы металлов, в данном случае олова и его спутников в гидротермальной системе.

К метаморфогенным относятся также месторождения высокоглиноземистого сырья – корундовые, силлиманитовые, кианитовые сланцы. Они образуются при весьма высоких давлениях и температурах. При высокой температуре и низких давлениях образуются андалузитовые сланцы. Исходным субстратом высокоглиноземистых пород обычно являются глины. Высокоглиноземистое сырье представляет интерес, как возможный источник алюминия, наждачного камня, электротехнических материалов.

При глубоком метаморфизме высокоглиноземистых пород иногда возникают ювелирные камни первого класса – рубины, сапфиры, характерные в ультраметаморфических комплексах Индии, Цейлона, Бирмы, Камбоджи.

С локальным термальным метаморфизмом (часто обусловленным внедрением интрузий габбро) связано преобразование серпентинитов, реже доломитов в весьма ценный поделочный камень – нефрит.

С процессами регионального зонального метаморфизма связываются некоторые стратиформные месторождения редких металлов скарноидного типа, не имеющие явной связи с какими-либо интрузиями (шеелитовые Сонг-Донг в Южной Корее, Кти-Теберда на Северном Кавказе, Фелбертал в Австрии и др., иногда бериллиевые с гельвином, бертрандитом, бериллиеносным везувианом и др.).

Некоторыми исследователями с многократным полигенным  (региональным, околоинтрузивным контактовым) метаморфизмом связываются месторождения 5-метальной формации (Co, Ni, Ag, Bi U). Предполагается, что в породах субстрата были дометаморфические концентрации этих металлов (возможно, непромышленные), регенерированные и обогащенные при наложении разновременных процессов.

Метаморфизованные месторождения имеют определенные  условия для образования – высокое давление и температуру. В литературе прошлых лет такие условия безоговорочно приписывались палеоглубинам рудообразования более 5 км. Вместе с тем геологической съемкой в разных регионах выявлены высоко метаморфизованные породы по молодым – меловым и даже кайнозойским отложениям, которые никак не могли быть погружены на такую глубину. Очевидно, высокие тепловые потоки и высокое давление могут иметь место на малых глубинах в зонах крупных активных разломов.

Региональный метаморфизм существенно преобразовал концентрации железа в докембрийских толщах (первоначально предположительно гидротермально-осадочные) с образованием гигантских месторождений в джеспилитах – железистых кварцитах, вмещающих подавляющую часть мировых запасов (КМА, Австралия, Бразилия, Кривой Рог, озера Верхнего в США и др.). В этих месторождениях железорудные пласты смяты в складки согласно с вмещающими метаморфическими сланцами (филлитами, тальковыми, амфиболовыми и другими). Соотношение оксидов железа (гематит, магнетит) и кварца в рудах колеблется от 70:30 до обратного. Руды ритмично-полосчатые, из тонких слойков рудных и нерудных минералов. Кроме кварца, на участках наложения более поздних метасоматических процессов, в рудах возникают альбит, щелочные пироксен и амфиболы (эгирин, арфведсонит, рибекит), сидерит, сульфиды. В таких участках на железистые кварциты нередко накладывается богатая и масштабная минерализация урана (Кривой Рог), золота (Итабира, Бразилия). Нередко в джеспилитах отмечается повышенное содержание платины и палладия (например, в Михайловском месторождении в Курской обл. выделяется участок под названием «Палладиевая горка» с содержанием палладия 0,9 г/т). При наложении на рудные пласты складчатости и разрывов повышается доля магнетита в рудах, его содержание до образования богатых рудных столбов в замках складок. Самое богатое железное оруденение образуется при выветривании рудных пластов (так называемые мартитовые руды с содержанием железа до 55-60 %, почти нацело сложенные окислами железа).

Сходным образом образуются крупные залежи силикатных руд марганца в докембрийских толщах (так называемые гондиты, состоящие из кварца, марганцевого граната и родонита). Сами по себе они не имеют промышленной ценности, однако в корах выветривания образуются богатые качественные оксидные руды с содержанием марганца до 50 %. Крупные месторождения таких руд известны в Индии.

К метаморфизованным обычно месторождениям относят золотой сверхгигант – Витватерсранд в ЮАР, на котором добыта половина мировой добычи золота (до рекордной 1000 т в 1970 г.). Рудоносными являются средне- верхнепротерозойские терригенные ритмично слоистые толщи, заполняющие впадину в архейском гнейсовом щите. Основная часть терригенных пород превращена в кварциты и глинистые сланцы. Мощность толщи – до 9 км. Среди них выделяются пачки конгломератов с галькой кварца и кварцитов с цементом, превращенным в серицит-хлорит-кварцевый парагенезис. Второстепенные метаморфические минералы – хлоритоид, графит. Цемент составляет 30 % объема конгломератов, гальки – 70 %.

Рудные пачки мощностью от 1 м до 6-8 м, реже до 45 м протягиваются на десятки километров, в глубину они отработаны до 3,5 км. Общая протяженность серии рудных пластов – более 450 км в виде дуги по периметру палеовпадины. В пачках основная часть золота приурочена к базальным или внутренним слоям конгломератов мощностью от 30-40 см до 1-4м. Выделяется 6 главных рудных пластов. В цементе развита мелкая вкрапленность пирита – главного концентратора золота. Кроме пирита ограниченно развиты пирротин, арсенопирит, халькопирит, сфалерит, галенит, уранинит. Концентрация пирита и соответственно золота возрастает на участках деформаций пластов. Предполагается первичное осадочное накопление золота в отложениях палеодельт внутриконтинентальной  впадины. Несомненно осадочное (кластогенное) происхождение имеют хорошо окатанные зерна платины, иридия, осмия и других платиноидов, а также редкие зерна алмазов, сопутствующие золоту.

Процессы метаморфизма низшей (зеленосланцевой) фации привели к гидротермальному перераспределению первично осадочного золота, происходившему в пределах конгломератовых пластов, как наиболее проницаемых пород. Частицы золота, не покидая в основном пределы минерала - хозяина (пирита), претерпели некоторое укрупнение. Некоторые золотоносные пласты обогатились при этом ураном. Среднее содержание золота в пластах 3-18 г/т (в подзонах вторичного сульфидного обогащения в подошве зоны окисления – до 80 г/т), урана – 0,027 %. Наиболее крупные золотины имеют размер до 0,1 %, форма их – неправильные сростки, микропрожилки, зерна.

Сходное строение, хотя и несравненно меньший размер, имеют месторождения золота в конгломератах в Гане (Тарква), радиоактивных минералов в Канаде, США, Бразилии (Блайнд-Ривер и др.).

В конце статьи, следует отметить метаморфизованные россыпи алмазов в глубоко преобразованных терригенных отложений докембрия (слюдисто-кварцевые «итаколумиты» Бразильского щита, конгломераты Гвианского щита и юга Африки). Промышленное значение алмазоносность этих пород обычно приобретает лишь в корах выветривания и продуктах их размыва и переотложения.

PAGE  1


 

А также другие работы, которые могут Вас заинтересовать

1347. Ленточный транспортер. 409.5 KB
  Кинематический расчет привода. Определение частот вращения и вращающих моментов на валах. Выбор типа и схемы установки подшипников. Подшипники тихоходного вала (7111А). Подшипники приводного вала. Расчет на динамическую грузоподъемность.
1348. Методы решения дифференциальных уравнений. Метод Эйлера-Коши и усовершенствованный метод Эйлера 6.12 MB
  Численное дифференцирование. Усовершенствованный метод Эйлера. Решение задачи усовершенствованным методом Эйлера. Блок-схема алгоритма к усовершенствованному методу Эйлера. Реализация на ЭВМ тестового примера усовершенствованного метода Эйлера.
1349. Метод вузлових потенціалів 113 KB
  Визначити струми у всіх гілках схеми методом вузлових потенціалів. За нульовий потенціал прийняти потенціал вузла b.
1350. Разработка объемного гидропривода поступательного действия 148.5 KB
  Разработка принципиальной гидравлической схемы. Расчет и выбор силовых гидродвигателей, насоса и рабочей жидкости. Расчет и выбор гидроаппаратов. Расчет гидролиний. Тепловой расчет гидропривода. Расчет внешней характеристики гидропривода.
1351. Методи розкодування інформації 208 KB
  Курсова робота на тему методи розкодування інформації. Поняття кодування інформації. Знаковий метод фіксації інформації. Мова як основний засіб кодування й передачі інформації. Мова як засіб кодування інформації. Традиційна система письма. Спеціальні системи письма.
1352. Проектирование полносборного жилого дома 332 KB
  Строительная система, конструктивная система и конструктивная схема здания. Выполнение требований пожарной безопасности. Пути эвакуации. Санитарно-техническое оборудование. Расчет сопротивления теплопередаче наружной стены. Расчет звукоизоляции межквартирных стен.
1353. Медицинское обеспечение мероприятий гражданской обороны 14.64 MB
  В учебном пособии рассматриваются основные вопросы медицинского обеспечения мероприятий гражданской обороны. Учебное пособие подготовлено преподавателями кафедры экстремальной и военной медицины Государственного образовательного учреждения высшего профессионального образования «Ивановская государственная медицинская академия Министерства здравоохранения и социального развития России» и рассчитано для обучения студентов медицинского вуза и может быть полезным для подготовки интернов, ординаторов и врачей.
1354. Процес естетичного виховання дошкільників засобами природи 313 KB
  Аналіз психолого-педагогічної літератури з проблеми естетичного виховання дітей дошкільного вiку. Природа як засіб естетичного виховання дітей дошкільного віку.