24102

Обмен углеводов в мышцах

Шпаргалка

Биология и генетика

В состоянии покоя значительные количества глюкозы резервируются в форме гликогена. Обмен углеводов в мышцах обеспечивает создание тканевых запасов гликогена в состоянии покоя и использование этих запасов а также поступающей глюкозы при напряженной работе; основные энергетические потребности всех типов мышц удовлетворяются главным образом за счет окисления продуктов обмена жиров. Фосфорилирование глюкозы в мышцах происходит под дейстием гексокиназы в печени этот процесс катализируется глюкокиназой. Если в крови поступающей к мозгу...

Русский

2013-08-09

61.5 KB

7 чел.

Билет 32.

Обмен углеводов в мышцах.

Печень учитывает запросы других органов и тканей в отношении углеводного обмена. В мышцах углеводный обмен происходит в соответствии с принципом самообслуживания.

Цель мышечной клетки – наиболее эффективно использовать поступающую глюкозу для образования АТФ, необходимого для осуществления механической работы – сокращения. В состоянии покоя значительные количества глюкозы резервируются в форме гликогена. Цитоплазма мышечных клеток содержит в высоких концентрациях ферменты гликолиза, а изобилие митохондрий обеспечивает эффективный распад продуктов гликолиза через путь лимонной кислоты и цепь переноса электронов. Лишь в условиях крайнего утомления эти аэробные процессы е справляются с накоплением лактата.

В мышцах идет гликогенез, мышца осуществляет лишь немногие синтетические функции. Ключевые ферменты глюконеогенеза в мышцах отсутствуют, и глюконеогенез не идет. Для востановительных синтезов в мышце НАДФ.Н не требуется, и фосфоглюконатный путь почти не функционирует.

Обмен углеводов в мышцах обеспечивает создание тканевых запасов гликогена в состоянии покоя и использование этих запасов, а также поступающей глюкозы при напряженной работе; основные энергетические потребности всех типов мышц удовлетворяются главным образом за счет окисления продуктов обмена жиров. Ни медленно сокращающаяся гладкая мышечная ткань, ни сердечная мышца не потребляют глюкозу в значительной мере. Во время напряженной работы сердце обеспечивает себя лактатом для окисления.

Обмен углеводов в мышце.

 

Фосфорилирование глюкозы в мышцах происходит под дейстием гексокиназы, в печени этот процесс катализируется глюкокиназой. Эти ферменты отличаются по Кm. Кm гексокиназы значительно ниже Кm глюкокиназы. Фермент мышц – гексокиназа участвует во внутриклеточной регуляции, т.е. этот фермент будет фосфорилировать глюкозу только до тех пор, пока глюкозо-6-ф используется в мышцах для гликолиза или образования гликогена.

Другое важнейшее различие между тканью печени и мышцы состоит в отсутствии в мышцах фермента глюкозо-6-фасфатазы.

Обмен углеводов в мозге.

 По сравнению со всеми органами тела функций мозга в наибольшей степени зависит от обмена углеводов. Если в крови, поступающей к мозгу, концентрация глюкозы становится вдвое ниже нормальной, то в течение нескольких секунд наступает потеря сознания, а через несколько минут – смерть. Для того чтобы обеспечить освобождение достаточного количества энергии, катаболизм глюкозы должен осуществляться в соответствии с аэробными механизмами; об этом свидетельствует даже более высокая чувствительность мозга к гипоксии, чем гипогликемии. Метаболизм глюкозы в мозге обеспечивает синтез нейромедиаторов, аминокислот, липидов, компонентов нуклеиновых кислот. Фосфоглюконатный путь функционирует в небольшой мере, обеспечивая НАДФ.Н для некоторых из этих синтезов. Основной катаболизм глюкозы в ткани мозга протекает по гликолитическому пути.

Гексокиназа мозга имеет высокое сродство к глюкозе, что обеспечивает эффективное использование глюкозы мозгом. Активность ферментов гликолиза велика.

Высокая активность митохондриальных ферментов цикла лимонной кислоты предотвращает накопление лактата в тканях мозга; большая часть пирувата окисляется до Ац-КоА. Небольшая часть Ац-КоА используется для образования нейромедиатора ацетилхолина. Основное количество Ац-КоА подвергается окислению в цикле лимонной кислоты и дает энергию. Метаболизм цикла Кребса используется для синтеза аспартата и глутамата. Эти аминокислоты обеспечивают обезвреживание аммиака в тканях мозга.

Мозг содержит мало гликогена (0,1% от общего веса); этот запас расходуется очень быстро.

Обмен углеводов в ткани мозга.

в условиях длительного голодания мозг использует как источник энергии кетоновые тела. В крайних случаях такие аминокислоты как глутамат и аспартат превращаются в соответствующие кетокислоты, которые способны к окислению с образованием энергии.

PAGE  4


 

А также другие работы, которые могут Вас заинтересовать

11125. Геометрические характеристики плоских сечений. Статические моменты площади. Центр тяжести площади 1.28 MB
  Геометрические характеристики плоских сечений. Основным объектом изучаемым в курсе сопротивление материалов является стержень. Сопротивление стержня различным видам деформации часто зависит не только от его материалов и размеров но и от очертаний оси формы попер...
11126. Основы теории напряженного состояния 1.08 MB
  Основы теории напряженного состояния. Напряжения в точке. Если мысленно вырезать вокруг какойнибудь точки тела элемент в виде бесконечного малого кубика то по его граням в общем случае будут действовать напряжения представленные на рис. 3.1. Совокупность нормальных...
11127. Теории прочности. Чистый сдвиг 786 KB
  Теории прочности. Чистый сдвиг Теории прочности. Важнейшей задачей инженерного расчета является оценка прочности элемента конструкции по известному напряженному состоянию. Для простых видов деформаций в частности для одноосных напряженных состояний определение з...
11128. Кручение. Кручение бруса некруглого сечения 911.5 KB
  Кручение. Кручение бруса некруглого сечения. Кручение прямого круглого бруса. Деформация кручения вызывается парами сил плоскости действия которых перпендикулярны к оси стержня. Поэтому при кручении в произвольном поперечном сечении стержня из шести внутренних сил
11129. Чистый изгиб. Поперечный изгиб 623 KB
  Чистый изгиб. Поперечный изгиб. Общие понятия. Деформация изгиба заключается в искривлении оси прямого стержня или в изменении начальной кривизны прямого стержня рис. 6.1. Ознакомимся с основными понятиями которые используются при рассмотрении деформации изгиба. С
11130. Полный расчет балок на прочность при изгибе. Дифференциальное уравнение изогнутой оси 704 KB
  Полный расчет балок на прочность при изгибе. Дифференциальное уравнение изогнутой оси Касательные напряжения при изгибе. Присутствие поперечных сил при поперечном изгибе свидетельствует о наличии в поперечном сечении касательных напряжений. ...
11131. Определение перемещений при изгибе методом начальных параметров. Определение перемещений в балках переменного сечения 396 KB
  Определение перемещений при изгибе методом начальных параметров. Определение перемещений в балках переменного сечения Определение перемещений при изгибе методом начальных параметров Определение перемещений методом непосредственного интегрирования дифференциаль...
11132. Определение перемещений в упругих системах. Общие понятия 632 KB
  Определение перемещений в упругих системах. Общие понятия Обобщенные силы и перемещения Ранее нами были рассмотрены некоторые частные способы определения перемещений удобные при решении простейших задач. Начало возможных перемещений и закон сохранения энергии по...
11133. Определение перемещений в упругих системах. Метод мора. Способ верещагина 518 KB
  Определение перемещений в упругих системах. Метод мора. Способ верещагина. Метод Мора Рассмотрим произвольную плоскую стержневую систему нагруженную заданными силами рис. 2.3.1. Усилия в произвольном сечении обозначим через . Пусть требуется определить перемещени