24185

Применение имитационного моделирования

Лекция

Социология, социальная работа и статистика

Имитационное моделирование это частный случай математического моделирования. Применение имитационного моделирования К имитационному моделированию прибегают когда: дорого или невозможно экспериментировать на реальном объекте; невозможно построить аналитическую модель: в системе есть время причинные связи последствие нелинейности стохастические случайные переменные; необходимо сымитировать поведение системы во времени. Цель имитационного моделирования состоит в воспроизведении поведения исследуемой системы на основе результатов...

Русский

2013-08-09

47.5 KB

32 чел.

Моделирование  один из наиболее распространенных методов исследования процессов функционирования сложных систем. Известно достаточно большое количество методов построения математических моделей и средств реализации моделирующих алгоритмов. Наиболее распространенными из них являются системы и сети массового обслуживания.

В терминах систем массового обслуживания (СМО) описываются многие реальные системы: вычислительные системы, узлы сетей связи, системы посадки самолетов, магазины, производственные участки  любые системы, где возможны очереди и (или) отказы в обслуживании.

Имитационное моделирование — это метод, позволяющий строить модели, описывающие процессы так, как они проходили бы в действительности. Такую модель можно «проиграть» во времени как для одного испытания, так и заданного их множества. При этом результаты будут определяться случайным характером процессов. По этим данным можно получить достаточно устойчивую статистику.

Имитационное моделирование — это частный случай математического моделирования.

Применение имитационного моделирования

К имитационному моделированию прибегают, когда:

  •  дорого или невозможно экспериментировать на реальном объекте;
  •  невозможно построить аналитическую модель: в системе есть время, причинные связи, последствие, нелинейности, стохастические (случайные) переменные;
  •  необходимо сымитировать поведение системы во времени.

Цель имитационного моделирования состоит в воспроизведении поведения исследуемой системы на основе результатов анализа наиболее существенных взаимосвязей между ее элементами или другими словами – разработке симулятора (английский термин – simulation modeling) исследуемой предметной области для проведения различных экспериментов.

Имитационное моделирование позволяет имитировать поведение системы, во времени. При чём плюсом является то, что временем в модели можно управлять: замедлять в случае с быстропротекающими процессами и ускорять для моделирования систем с медленной изменчивостью. Можно имитировать поведение тех объектов реальные эксперименты с которыми, дороги, невозможны или опасны.

Имитация, как метод решения нетривиальных задач, получила начальное развитие в связи с созданием ЭВМ в 1950х — 1960х годах.

Можно выделить две разновидности имитации:

  •  Метод Монте-Карло (метод статистических испытаний);
  •  Метод имитационного моделирования (статистическое моделирование).

Виды имитационного моделирования

  •  Агентное моделирование – относительно новое (1990е-2000е гг.) направление в имитационном моделировании, которое используется для исследования децентрализованных систем, динамика функционирования которых определяется не глобальными правилами и законами (как в других парадигмах моделирования), а наоборот. Когда эти глобальные правила и законы являются результатом индивидуальной активности членов группы. Цель агентных моделей – получить представление об этих глобальных правилах, общем поведении системы, исходя из предположений об индивидуальном, частном поведении ее отдельных активных объектов и взаимодействии этих объектов в системе. Агент – некая сущность, обладающая активностью, автономным поведением, может принимать решения в соответствии с некоторым набором правил, взаимодействовать с окружением, а также самостоятельно изменяться.
  •  Дискретно-событийное моделирование – подход к моделированию предлагающий абстрагироваться от непрерывной природы событий и рассматривать только основные события моделируемой системы такие как: «ожидание», «обработка заказа», «движение с грузом», «разгрузка» и другие. Дискретно-событийное моделирование наиболее развито и имеет огромную сферу приложений – от логистики и систем массового обслуживания до транспортных и производственных систем. Этот вид моделирования наиболее подходит для моделирования производственных процессов. Основан Джеффри Гордоном в 1960х годах.
  •  Системная динамика – парадигма моделирования, где для исследуемой системы строятся графические диаграммы причинных связей и глобальных влияний одних параметров на другие во времени, а затем созданная на основе этих диаграмм модель имитируется на компьютере. По сути, такой вид моделирования более всех других парадигм помогает понять суть происходящего выявления причинно-следственных связей между объектами и явлениями. С помощью системной динамики строят модели бизнес-процессов, развития города, модели производства, динамики популяции, экологии и развития эпидемии. Метод основан Форрестером в 1950 годах.

Области применения

  •  Бизнес процессы
  •  Боевые действия
  •  Динамика населения
  •  ИТ-инфраструктура
  •  Математическое моделирование исторических процессов
  •  Логистика
  •  Пешеходная динамика
  •  Производство
  •  Рынок и конкуренция
  •  Сервисные центры
  •  Цепочки поставок
  •  Уличное движение
  •  Управление проектами
  •  Экономика здравоохранения
  •  Экосистемы

Популярные системы имитационного моделирования

  •  AnyLogic 
  •  Arena[1] 
  •  eM-Plant 
  •  Powersim
  •  GPSS 


 

А также другие работы, которые могут Вас заинтересовать

48597. СИСТЕМА РЕГУЛИРОВАНИЯ ДАВЛЕНИЯ ПАРА ПЕРЕД ТУРБИНОЙ 5.97 MB
  Определение оптимальных параметров настройки регулятора. Выбор унифицированного промышленного регулятора. Данный Курсовой проект по курсу посвящен синтезу локальной системы регулирования технологического параметра объекта включающему в себя выбор необходимого закона регулирования регулятора и разработку системы в целом на базе приборов ГСП. В данном варианте схемы на вход регулятора давления пара РД поступают сигналы от задатчика 3 по линии главной обратной связи сигнал о давлении пара перед турбиной Pпп а по линии b сигнал о давлении...
48598. Система регулирования давления пара перед турбиной на ТЭС 794.5 KB
  Определение оптимальной передаточной функции регулятора. Определение оптимальных параметров настройки регулятора Выбор промышленного регулятора. Курсовой проект по курсу Проектирование современных систем управления посвящен синтезу локальной системы регулирования технологического параметра объекта включающему в себя выбор необходимого закона регулирования регулятора и разработку системы в целом на базе приборов ГСП.
48599. Правовой статус личности 187.5 KB
  Рассмотреть соотношение государства, правовой системы и личности; изучить понятия «правовой статус» и «правовое положение» личности, охарактеризовать виды правового статуса; изучить структуру понятия «правовой статус»; привести классификацию конституционных прав и свобод человека в РФ
48602. Система регулирования давления пара перед турбиной 4.04 MB
  Пар для турбин тепловых электрических станций вырабатывается паровыми котлами, которые подразделяют на барабанные и прямоточные. Рассмотрим процесс производства пара в барабанных котлах.
48603. РОЗРОБКА АВТОМАТИЧНОГО ПРИСТРОЮ 120.5 KB
  Розробка схем елементів автоматичного пристрою. Розробка комбінаційних схем. Розробка комбінаційних схем
48604. Проектування автоматичного пристрою 1.54 MB
  КИЇВ – 2006 НАЦІОНАЛЬНИЙ АВІАЦІЙНИЙ УНІВЕРСИТЕТ КАФЕДРА Обчислювальної техніки ЗАВДАННЯ на курсову роботу з дисципліни: Комп’ютерна електроніка Виконала: Кадет Марія Василівна Група 201 Факультет ФКС Тема проекту “Розробка автоматичного пристрою†Вхідні дані: серія мікросхем елементна база структурна схема Завдання видано Термін здачі проекту Керівник Андрєєв В. Тригер це запам’ятовуючий елемент з двома стійкими станами котрі змінюються під дією вхідних сигналів. Тригери що...
48605. Анализ предприятия торгово-бытового обслуживания “Универсам” 78.5 KB
  Кладка стен выполнить из глиняного каркасного кирпича М75 на цементнопесчаном растворе М50 толщиной 640мм с утеплителем – пеноизол группы Л24. Кирпичные перегородки выполнить толщиной 120мм из каркасного кирпича М50 на растворе М25 под штукатурку армировать через три ряда кладки по высоте. Стойки козырьков выполнить из металлических труб грунтовать ГФ21 окрасить эмалью по металлу колер RL 5005серый. Экраны козырьков выполнить из панелей фасадной ПФ1А фирмы â€ИНСИ†колер RL 1014.