24268

Внутренняя энергия

Лекция

Физика

Если термодинамический процесс изображен на p-v-диаграмме, то площадь под кривой этого процесса численно равна работе, произведенной газом в этом процессе.

Русский

2014-10-12

437.5 KB

2 чел.

ЛЕКЦИЯ № 12

6. Внутренняя энергия.

Количество теплоты. Работа газа при расширении

Полная энергия системы частиц складывается из энергии движения системы Wk, потенциальной энергии взаимодействия системы Wр в потенциальном поле и внутренней энергии системы Wвн:

где   внутренняя энергия системы частиц – сумма кинетических и потенциальных энергий всех частиц системы.

Для идеального газа , тогда

   [Wвн] = Дж       (12-1)

Изменение внутренней энергии:

   (12-2)

Для T = const

Как можно изменить внутреннюю энергию системы частиц?

1) Путем подведения к системе или отведения от нее количества тепла Q, [Q] = Дж.

2) Путем совершения механической работы.

   

     (12-3)

Полная работа

Если термодинамический процесс изображен на p-v-диаграмме, то площадь под кривой этого процесса численно равна работе, произведенной газом в этом процессе.

    V2 > V1      V2 < V1

    A12 > 0      A12 < 0

А – работа газа по изменению объема против внешних сил;

– работа внешних сил над газом

Для замкнутого кругового процесса:

                

Изопроцессы:

1) V = const  AV = 0

Т.к. в изохорном процессе AV = 0, тогда изменить внутреннюю энергию газа можно только за счет теплообмена. Тогда, количество тепла Q – это количественная мера изменения внутренней энергии газа в изохорном процессе.

2) P = const       (12-4)

3) T = const         (12-5)


     Ap > AT , AV = 0

7. Первый закон

(первое начало) термодинамики

Итак, изменить внутреннюю энергию частиц можно либо подводя (отводя) к системе тепло, либо совершая над системой работу. Тогда в соответствии с законом сохранения энергии можно записать:

или    (12-6)

– количество тепла, подведенное к системе частиц, расходуется на изменение внутренней энергии системы и на совершение системой механической работы по изменению объема против внешних сил. Это определение называют первым законом (первым началом) термодинамики.

Если  то  и ,

а если  то  и .

Формулировка 1-го закона термодинамики в различных изопроцессах:

1) V = const  AV = 0  

2) P = const       скороварка !

3) T = const    

8. Адиабатный процесс

Адиабатный процесс – процесс изменения термодинамических параметров без теплообмена системы с окружающей средой (тепло не подводится к системе и не отводится от системы).

Любой быстропротекающий процесс    адиабатный процесс.

            (12-7)

т.е., чтобы газ совершил положительную работу , он должен охладиться .

Уравнение адиабатного процесса (уравнение Пуассона):

       (12-8)

где  постоянная адиабатного процесса.

           («адиабата всегда идет круче изотермы»!)

     

Шампанское !

     (12-9)

Демонстрация №15: Адиабатическое расширение газов.

Вывод уравнения адиабатического процесса (зависимость )

 

Из уравнения Клапейрона-Менделеева   

  

постоянная адиабатного процесса

.

9. Теплоемкость

Все вещества при подведении к ним тепла нагреваются. Но разные вещества нагреваются по-разному    они отличаются теплоемкостью!

Теплоемкость вещества  это физическая скалярная величина, равная количеству тепла, которое нужно подвести ко всей системе частиц вещества, чтобы изменить его температуру на один градус:

 [С] = Дж/К,        (12-10)

       (12-10а)

Для сравнения теплоемкостей разных веществ необходимо брать либо  одинаковую массу, либо одинаковое количество вещества. Тогда используют понятия: удельная и молярная теплоемкости.

Удельная теплоемкость вещества  это физическая скалярная величина, равная количеству тепла, которое нужно подвести к 1 кг вещества, чтобы изменить его температуру на один градус:

    [cm] = Дж/кгК,   (12-11)

      (12-11а)

при cm = const                   (12-11б)

Молярная теплоемкость вещества  это физическая скалярная величина, равная количеству тепла, которое нужно подвести к 1 молю вещества, чтобы изменить его температуру на один градус:

  [c] = Дж/мольК,   (12-12)

       (12-12а)

Между С, cm и c существует взаимосвязь:

С = mcm = c,

c = Мcm.

Для твердого и жидкого веществ при изменении Т можно считать, что V  const, тогда АV = 0 и значит Q = dWвн. Поэтому теплоемкость твердых и жидких веществ в широком интервале температур остается постоянной (можно найти в таблицах).

А вот для газов в разных изопроцессах нужно подводить разное количество тепла, значит и теплоемкость одного и того же газа в разных изопроцессах разная.

Изопроцессы:

1) Адиабатный  Q = 0  

2) Изотермический  T = const 

3) Изохорный  V = const

,  ,         (12-13)

4) Изобарный  Р = const

всегда!

т. к. для нагрева в изобарном процессе тепла нужно подводить больше на величину работы, чем в изохорном!

,  ,       (12-14)

     (12-15)

постоянная адиабаты.

Из уравнений (12-13) и (12-14) можно записать:

Сp  СV = nR;   ;        (12-16)

уравнения Майера.

Из формул (12-13) и (12-14) не следует зависимость С от Т. Но для газов экспериментально фиксируется такая зависимость С = f(T).

     Классическая физика объяснить такую

       зависимость не смогла!

         Ответ был получен только

       в квантовой физике!

В формулы для теплоемкостей газов  входит число степеней свободы молекул i, которая, как оказалось, и зависит от температуры i = f(T).

Энергия несвободных частиц (а любой сосуд, занимаемый молекулами газа, является потенциальной ямой, из которой молекулы самостоятельно выбраться не могут) не может быть любой, она квантуется, т. е. принимает дискретный набор значений. С ростом температуры возбуждаются сначала поступательные степени свободы, затем вращательные и позднее колебательные.


10. Приведенная теплота. Энтропия. Вычисление энтропии

В первом законе термодинамики

.

полный дифференциал             .

зависит от процесса                     .

тоже зависит от процесса            .

приведенная теплота.

Проверим, не является ли функция полным дифференциалом.

  интегрируем:

Для замкнутого цикла   .

Значит под интегралом  приведенная теплота, является  полным дифференциалом некоторой функции, которая определяет данное состояние системы частиц.

Следовательно,

      (12-17)

где S – функция состояния (термодинамический параметр) системы частиц = энтропия !

Термодинамика не дает определения энтропии, она дает лишь определение изменения энтропии – это физическая величина, равная приведенной теплоте.

приведенная теплота.

[S] = Дж/К.

Для вычисления конечного изменения энтропии в каком-либо процессе нужно вычислить интеграл от (12-17):

        (12-18)

Если к системе тепло подводится, то S > 0 (энтропия нарастает), а если тепло отводится, то S < 0 (энтропия системы убывает).

приведенная теплота характеризует качество («ценность») подведенного тепла. Чем «качественнее» («ценнее») подводимое тепло, тем на большую величину изменится энтропия системы.

Так как  в разных процессах разное, тогда и вычисление S производится по разным формулам:

1)  = 0  S = 0        S = const – изоэнтропический процесс.

2) Т = const  Wвн = 0        

   (12-18а)

3) V = const  AV = 0        

           (12-18б)

4) Р = const         

         (12-18в)

Фазовые переходы – плавление (кристаллизация), кипение (конденсация) происходят при T = const, тогда

– плавление (кристаллизация) –  

где   удельная теплота плавления – количество тепла, которое нужно подвести к 1 кг твердого вещества, чтобы при T = const превратить его в жидкость, Дж/кг.

– кипение (конденсация) –  

где r  удельная теплота парообразования – количество тепла, которое нужно подвести к 1 кг жидкости, чтобы при T = const превратить ее в пар, Дж/кг.

Итак, S – энтропия – это равноправный четвертый термодинамический параметр любой системы частиц

.

          (12-19)

первый закон термодинамики.

Энтропия – величина аддитивная, значит

S = S1 + S2 + … + Sn

и

S = S1 + S2 + … + Sn.

PAGE   \* MERGEFORMAT7


V

Р

2

1

V

Р

1

P

V

                   2

1

A > 0

V

Р

2

1

3

V1

V2

V

Р

2

1

3

T = const

ад.

Т

С

W

~kBT

поступ.   вращат.    колебат.


 

А также другие работы, которые могут Вас заинтересовать

80803. Меры обеспечения экологической безопасности 31.19 KB
  Экологическая безопасность обеспечивается комплексом правовых организационных финансовых материальных и информационных мер предназначенных для прогнозирования предотвращения ликвидации реальных и потенциальных угроз безопасности смягчения их последствий. Угроза экологической безопасности выражает повышенную вероятность гибели отдельных природных объектов существенного загрязнения отравления или заражения окружающей среды масштабы которых определяются исходя из размеров поражения окружающей среды его устойчивости возможности...
80804. Предупреждение и ликвидация чрезвычайных ситуаций природного и техногенного характера 32.12 KB
  Предупреждение чрезвычайных ситуаций это комплекс мероприятий проводимых заблаговременно и направленных на максимально возможное уменьшение риска возникновения чрезвычайных ситуаций а также на сохранение здоровья людей снижение размеров ущерба окружающей среде и материальных потерь в случае их возникновения. Ликвидация чрезвычайных ситуаций это аварийноспасательные и другие неотложные работы проводимые при...
80805. Правовые меры обеспечения радиационной безопасности 30.43 KB
  Федеральный закон о радиационной безопасности населения закрепляет требования по обеспечению радиационной безопасности при обращении с радиоактивными веществами ядерными материалами. При обращении с источниками ионизирующего излучения организации обязаны: 1соблюдать требования законодательства РФ норм правил и нормативов в области обеспечения радиационной безопасности; 2 планировать и осуществлять мероприятия по обеспечению радиационной безопасности; 3 осуществлять систематический производственный контроль за радиационной обстановкой на...
80806. Правовой режим территорий подвергшихся радиоактивному загрязнению 29.82 KB
  зона эвакуации территория вокруг Чернобыльской АЭС с которой в 1986 г. было эвакуировано население 30километровая зона; 2. зона первоочередного отселения; 3. зона последующего отселения; 4.
80807. Порядок обращения с отходами производства и потребления 31.6 KB
  была принята серия специальных законодательных и иных нормативноправовых актов полностью или частично регламентирующих обращение с отходами в рамках логического правотворчества что послужило прорывом в данной области. определил правовые основы обращения с отходами производства и потребления в целях предотвращения их вредного воздействия на здоровье человека и окружающую среду впервые четко зафиксировал принципы государственной политики в сфере обращения с отходами: охрана здоровья человека поддержание и восстановление благоприятного...
80808. Понятие, система и источники международного экологического права 33.01 KB
  38 Устава Международного суда ООН источниками международного права охраны окружающей среды являются: международные договоры как общие так и специальные; международный обычай как доказательство всеобщей практики признанной в качестве правовой нормы; общие принципы права признанные цивилизованными государствами; вспомогательное право т. Источники международного экологического права разделяются: на общие Устав ООН конвенции общего характера регулирующие наряду с иными вопросами и охрану окружающей среды Конвенция ООН по...
80809. Международные экологические организации. Международные конференции по окружающей среде 32.62 KB
  Большой вклад в решение проблем охраны окружающей среды вносит ООН. В природоохранительной деятельности участвуют все главные органы и специализированные учреждения ООН Генеральная Ассамблея Экономический и Социальный Совет региональные экономические комиссии например Европейская экономическая комиссия Конференция ООН по торговле и развитию ЮНКТАД Организация объединенных наций по промышленному развитию ЮНИДО Международная Организация Труда МОТ Организация Объединенных Наций по вопросам продовольствия и сельского хозяйства...
80810. Экологическое право Европейского Союза: общая характеристика 30.72 KB
  Охрана атмосферного воздуха Директива Европейского Сообщества об оценке и управлении качеством атмосферного воздуха Директива о схеме торговли выбросами парниковых газов в Сообществе Водное законодательство Директива о водной политике ЕС Директива об охране подземных вод от загрязнения определенными опасными веществами Управление отходами Рамочная директива по отходам Директива по опасным отходам Директива о комплексном контроле и предотвращении загрязнения Охрана биоразнообразия Директива об охране диких птиц Директива об охране естественной...
80811. Экологическое право как отрасль права, наука, учебная дисциплина 36.7 KB
  Она включает в себя ряд самостоятельных отраслей права: земельное; водное; горное; воздухоохранительное; лесное; фаунистическое. Общее правило касающееся экологизации иного законодательства регулирующего общественные отношения затрагивающие экологические права и интересы общества заключается в следующем. Из этого конституционного положения следует вывод что в процессе развития и совершенствования каждой отрасли российского законодательства законодательная власть должна предусматривать характерные для каждой из них правовые меры по...