24444

Энтропия источника информации

Контрольная

Информатика, кибернетика и программирование

Энтропия источника информации. Источник информации можно представить в виде случайной величины X принимающей одно из конечного числа возможных значений {1 2 ј m} с вероятностью pi pi вероятность того что X = i.Теорема Шеннона Если имеется источник информации с энтропией Нх и канал связи с пропускной способностью С то если С HX то всегда можно закодировать достаточно длинное сообщение таким образом что оно будет передано без задержек. Если же напротив С HX то передача информации без задержек невозможна.

Русский

2013-08-09

179 KB

5 чел.

1. Энтропия источника информации. 

Источник информации можно представить в виде случайной величины X, принимающей одно из конечного числа возможных значений {1, 2, ј, m} с вероятностью pi (pi – вероятность того, что X = i). Энтропия случайной величины X по определению равна

где логарифмы берутся по основанию 2 и энтропия измеряется в битах. Энтропия устанавливает нижнюю границу средней длины любого двоичного представления случайной величины.

1.Теорема Шеннона

Если имеется источник информации с энтропией Н(х) и канал связи с пропускной способностью С, то если С > H(X), то всегда можно закодировать достаточно длинное сообщение таким образом, что оно будет передано без задержек. Если же, напротив,   С < H(X), то  передача информации без задержек невозможна.  

В любом реальном канале всегда присутствуют помехи. Однако, если их уровень настолько мал, что вероятность искажения практически равна нулю, можно условно считать, что все сигналы передаются неискаженными. В этом случае среднее количество информации, переносимое одним символом равно I(X,Y)=I(X,X)=H(X).   Максимальное значение  Hmax=log m. Следовательно, пропускная способность дискретного канала без помех за единицу времени равна

  .

Реальные каналы характеризуются тем, что на каналы всегда воздействуют помехи. Пропускная способность дискретного канала с помехами вычисляется по формуле  C =n[H(Y)-H(Y/X)]max . 

Где средняя, условная энтропия со стороны приемника сигналов     

А энтропия принимаемых сигналов определяется из условия максимального значения    H(y)= log m.

2. Теорема Шеннона. 

Пусть имеется источник информации X, энтропия которого в единицу времени равна H(X), и канал с пропускной способностью C. Если H(X)>C, то при любом кодировании передача сообщений без задержек и искажений невозможна. Если же H(X)<C, то любое достаточно длинное сообщение  можно всегда закодировать так, что оно будет передано без задержек и искажений с вероятностью сколь угодно близкой к единице.

Теорема Шеннона для дискретного информационного канала без помех и  при наличии помехи.

 Теорема Шеннона для дискретного канала без помех.

Если поток информации вырабатываемой источником достаточно близок к пропускной способности канала, т.е. I(X) = c-σ (1.13) где σ – сколь угодно малая величина.

То можно всегда найти такой способ кодирования, который обеспечивает передачу всех сообщений вырабатываемых источником при чем скорость передачи информации будет весьма близка к пропускной способности канала.

I(Z,Y) = c-σ

Обратное утверждение теоремы Шеннона заключается в том, что невозможно обеспечить длительную передачу всех сообщений если поток информации вырабатываемый источником превышает пропускную способность канала.

I(X)>с

Таким образом Теорема Шеннона утверждает, что при выполнении условия (1.13) скорость передачи информации может быть в принципе сколь угодно приближена к пропускной способности канала. Это может быть обеспечено соответственным способом кодирования. Теорема не отвечает на вопрос каким способом нужно осуществлять кодирование.

Теорема Шеннона для дискретного канала при наличии помех.

Если поток информации вырабатываемый источником достаточно близок к пропускной способности канала, т.е. если справедливо I(X) = c-σ, где σ – сколь угодно малая величина, то всегда можно найти такой способ кодирования, который обеспечит передачу всех сообщений вырабатываемых источником, а вероятность ошибок распознавания любого переданного сообщения будет сколь угодно малым Р н.о. <η  , Р н.о.  - вероятность неправильных опознаваний сообщений.

η- сколь угодно малая величина.

Обратная Теорема.

Если поток информации источника превышает пропускную способность канала, то не существует способа кодирования обеспечивающего передачу любого сообщения с малой вероятностью ошибки.


2. Таймеры счётчики ОМЭВМ.

Таймеры/счётчики(Т/С) предназначены для подсчёта внешних событий, для получения программно управляемых временных задержек и выполнения времязадающих функций ОМЭВМ.

В состав блока Т/С входят:

  1.  два 16-разрядных регистраТ/С0 и Т/С1:
  2.  8-разрядный регистр режимов Т/С(ТМОD);
  3.  8-разрядный регистр управления (ТСОN)
  4.  схема инкремента;
  5.  схема фиксации INT0, INT1, N0.N1;
  6.  схема управления флагами;
  7.  логика управленияТ/С.

Регистры Т/С0 и Т/С1 (16-ти разрядные,состоят из пар ТН0,ТL0 и ТН1,ТL1 ) выполняют функцию хранения содержимого счёта. Каждый из регистров ТН0,ТL0 и ТН1,ТL1 имеют свой адрес и может использоваться как регистр общего назначения (РОН), если Т/С не  используются(бит ТR0 для Т/С0 и бит ТR1 для Т/С1 в регистре управления TCON равны «0»).

Код величины начального счёта заносится в регистр Т/С программно. Признаком окончания счёта,  как правило, является переполнение регистра Т/С. т.е. переход его содержимого из состояния «все единицы» в состояние «все нули». В регистры ТН0, ТН1,ТL0,TL1 доступны по чтению, и, при необходимости, контроль достижения требуемой величины счёта может выполняться программно.

Регистр режимов Т/С(ТМОD) предназначен для приёма и хранения кода, определяющего:

-один из 4-х возможных режимов работы каждого Т/С;

-работу в качестве таймеров или счётчиков;

-управление Т/С от  внешнего вывода.

При работе в качестве таймера содержимое регистра Т/С инкрементируется в каждом машинном цикле, т.е Т/С является счётчиком машинных циклов ОМЭВМ. Машинный цикл состоит из 12-ти периодов частоты синхронизации ОМЭВМ fВQ,следовательно частота счёта в данном случае равна  fВQ/12.

При работе Т/С в качестве счётчика внешних событий содержимое регистра Т/С инкрементируется в ответ на переход из «1» в «0» сигнала на счётном входе ОМЭВМ ( вывод Т0 для Т/С0 и вывод Т1 для Т/С1).

Регистр управления (ТСON) предназначен для приёма и хранения управляющего слова.

Схема инкремента предназначена:

для увеличения на 1 в каждом машинном цикле содержимого регистров Т/С0,Т/С1 для которых установлен режим таймера и счёт разрешён;

для увеличения на 1 содержимого регистров Т/С0, Т/С1 для которых установлен режим счётчика, счёт разрешён и на соответствующем входе ОМЭВМ(Т0 для Т/С0 и Т1 для Т/С1) зафиксирован счётный импульс.

Схема фиксации INT0, NIT1, T0,T1 представляет собой четыре триггера. В каждом машинном цикле в них запоминается информация с выводов ОМЭВМ  INT0, INT1, T0, T1.

Схема управления флагами вырабатывает и снимает флаги переполнения Т/С и флаги запросов внешних прерываний.

Логика управления Т/С синхронизирует работу регистров Т/С0 и Т/С1 в соответствии с запрограммированными режимами работы и синхронизирует работу блока Т/С с работой ОМЭВМ.


 

А также другие работы, которые могут Вас заинтересовать

37807. Вказівники 2.14 MB
  Мета: навчитися програмувати з використанням вказівників та динамічних змінних, створювати та опрацьовувати черги та стеки.
37808. ОСНОВЫ РАБОТЫ В POWER POINT. Настройка электронной интерактивной презентации 72.5 KB
  Клавиши удаления и копирования текста и объектов Чтобы Нажмите Удалить один символ слева BCKSPCE Удалить одно слово слева CTRLBCKSPCE Удалить один символ справа DELETE Удалить одно слово справа CTRLDELETE Вырезать выделенный объект CTRLX Скопировать выделенный объект CTRLC Вставить вырезанный или скопированный объект CTRLV...
37809. ВЫЧИСЛЕНИЕ ОПРЕДЕЛЕННЫХ ИНТЕГРАЛОВ 248 KB
  4 Формула Симпсона Формула Симпсона записывается так: . Погрешность формулы Симпсона прямо пропорциональна в четвертой степени. На практике как и в случае метода трапеций расчеты ведут на сгущающихся сетках и оценку погрешности формулы Симпсона осуществляют по формуле 5. Критерием завершения процесса вычисления определенного интеграла с заданной точностью методом Симпсона на сгущающихся сетках служит условие .
37810. ОСНОВЫ РАБОТЫ С POWER POINT. Вставка таблицы Word 44.5 KB
  5 Щелкните вне таблицы для возвращения в PowerPoint. Для использования этой разметки нажмите кнопку Разметка слайда на панели инструментов Команды щелкните разметку Таблица затем нажмите кнопку Применить. Изменение таблицы Word 1 Дважды щелкните таблицу. 3 Щелкните вне таблицы для возвращения в PowerPoint и обновления таблицы показываемой в презентации.
37811. Создать калькулятор делающий: суммирование, вычитание, деление, умножение, вычисление степени 14.51 KB
  Вывод: выполняя лабораторную работу, я научилась работать с функциями.
37812. Составление плана материала, определение недостатка построения. Предложение варианта плана правки-обработки 52.5 KB
  Рыбаки рассказывали о будто бы пойманных ими когда-то калугах (амурских осетровых рыбах) под тонну весом. Документальное свидетельство об одной такой «крошке» на восемь с половиной центнеров мы нашли на прибрежном рыбзаводе.
37813. Робота з колекціями в мові програмування Java 29 KB
  творити клас, що описує типізовану колекцію (типом колекції є клас з лабораторної роботи №4) із заданою внутрішньою структурою (п.2), що складається не менше ніж з 3 конструкторів (1 – порожній, 2 – в який передається об’єкт, 3 – в який передається стандартна колекція об’єктів, наприклад, ArrayList)
37814. Удаление лишних или неудачных элементов в фотографиях средствами растрового графического редактора Adobe Photoshop 362.5 KB
  Задачи: научиться удалять линии электропередач с помощью инструмента Heling Brush Кисть восстановления; научиться удалять впечатанную дату с помощью инструмента Ptch заплатка; научиться разрабатывать стратегию ретуши. Удаление линий электропроводов с помощью инструмента Heling Brush Восстанавливающая кисть Выполняя данное упражнение вы удалите с фотографии линии электропроводов с помощью инструмента Heling Brush: До обработки После обработки Рис. Ключевым моментом в использовании данного инструмента так же как и инструмента...
37815. Улучшение структуры кожи людей в растровом графическом редакторе Adobe Photoshop 454 KB
  Задачи: научиться улучшать структуру кожи с помощью инструмента Clone Stmp Штамп; научиться использовать инструменты Heling Brush Восстанавливающая кисть и Lsso Лассо для ретуширования кожи человека; научиться удалять темные круги под глазами с помощью инструмента Ptch Заплатка. Удаление физических изъянов кожи с помощью инструмента Clone Stmp Штамп Выполняя данное упражнение вы удалите физические изъяны кожи с помощью инструмента Clone Stmp Штамп. Подбор размера кисти инструмента Clone Stmp 3. Свойства инструмента Clone...