24457

Химический состав почв

Лекция

Химия и фармакология

Почва является самой верхней частью коры выветривания литосферы и поэтому в общих чертах наследует ее химический состав. Однако, представляя собой одновременно продукт воздействия на литосферу живого вещества, почва в содержании ряда элементов приобретает существенные отличия.

Русский

2014-12-19

83 KB

6 чел.

ХИМИЧЕСКИЙ СОСТАВ ПОЧВ

Почва является самой верхней частью коры выветривания литосферы и поэтому в общих чертах наследует ее химический состав. Однако, представляя собой одновременно продукт воздействия на литосферу живого вещества, почва в содержании ряда элементов приобретает существенные отличия.

В литосфере и в почве около половины составляет кислород; второе место занимает кремний (приходится почти четвертая часть); следующую по порядку содержания группу, примерно десятую часть, образуют алюминий и железо; еще меньшую долю, всего лишь несколько процентов, составляют кальций, магний, натрий, калий и, наконец, на все остальные элементы, исключая углерод, приходится менее одного процента.

В природной «живой» почве, кроме того, представлены всегда органическое вещество, вода, газы. К числу наиболее ярких отличий химического состава почвы относится резкое возрастание в ней содержания углерода (в 20 раз) и азота (в 10 раз), обусловленное влиянием биогенных факторов. Поэтому же при сохранении общего порядка содержания элементов заметно возрастает количество кислорода и водорода, как элементов воды, на фоне уменьшения содержания алюминия, железа, калия, кальция, магния.

Если представить себе в общем виде почву как систему атомов химических элементов, то эта система окажется состоящей практически полностью из атомов кислорода и кремния, среди массы которых, концентрируясь в тех или иных точках и давая определенные минеральные и органические соединения, изредка встречаются атомы других элементов.

В валовом химическом составе почв преобладают кислород и кремний, в меньшей мере алюминий, и в очень небольшом количестве присутствуют железо, титан, кальций, магний, калий, натрий; другие элементы присутствуют в микроколичествах.

ХИМИЧЕСКИЕ ЭЛЕМЕНТЫ И ИХ СОЕДИНЕНИЯ В ПОЧВАХ

Для понимания причин формирования того или иного валового химического состава почвы и его варьирования по профилю всегда необходимо учитывать, что содержание отдельных элементов определяется присутствием их в почве в составе разнообразных конкретных минеральных и органических соединений.

Кремний. Содержание этого элемента определяется главным образом присутствием в почве кварца и в меньшей мере первичных и вторичных силикатов и алюмосиликатов. В ряде случаев может присутствовать, в том числе и в больших количествах, аморфный кремнезем в виде опала или халцедона, генезис и накопление которых в почве связаны с биогенными (опаловые фитолитарии, спикулы губок, скелеты диатомей и т. п.) или гидрогенными (окремнение почв) процессами. Валовое содержание SiО2 в почве колеблется от 40—70% в глинистых почвах, до 90—98% в песчаных, тогда как в ферраллитных почвах тропиков может быть и много ниже.

Алюминий. Содержание алюминия в почвах обусловлено главным образом присутствием полевых шпатов и глинистых минералов и отчасти некоторых других богатых алюминием первичных минералов, например слюд, эпидотов, граната, корунда. Может присутствовать и свободный глинозем в виде разнообразных гидроксидов алюминия (диаспор, бемит, гидраргиллит) в аморфной или кристаллической форме. Валовое содержание А12О3 в почвах обычно колеблется от 1—2 до 15—20%, а в ферраллитных почвах тропиков и бокситах может превысить 40%.

Железо. Этот элемент присутствует в почвах в составе как первичных, так и вторичных минералов, являясь компонентом магнетита, гематита, титаномагнетита, глауконита, роговых обманок, пироксенов, биотита, хлоритов, глинистых минералов, минералов группы оксидов железа. Много в почвах содержится и аморфных соединений железа, особенно разнообразных гидроксидов (гетит, гидрогетит и др.). Общее содержание в почве Fe2О3 колеблется в очень широких пределах (в %): от 0,5—1,0 в кварцево-песчаных почвах и 3—5 в почвах на лессах, до 8— —10 в почвах на элювии плотных ферромагнезиальных пород и до 20—50 в ферраллитных почвах и латеритах тропиков. В почвах также часто наблюдаются железистые конкреции и прослои.

Кальций. Содержание СаО в бескарбонатных суглинистых почвах составляет 1—3% и определяется главным образом присутствием глинистых минералов тонкодисперсных фракций, а также гумусом и органическими остатками, в связи с чем наблюдается тенденция к биогенному обогащению кальцием верхней органоаккумулятивной части профиля. Однако в ряде случаев его повышенное валовое содержание может быть обусловлено присутствием в крупных фракциях обломков карбонатных пород и первичных кальцийсодержащих минералов (кальцита, гипса, основных плагиоклазов и др.). В почвах сухостепной и аридной зон повышенное валовое содержание кальция может быть обусловлено образованием и накоплением вторичного кальцита или гипса в процессе почвообразования. Много кальция может накопиться в почве гидрогенным путем, вплоть до образования известковых или гипсовых кор.

Магний. Валовое содержание MgO в почве обычно близко к содержанию СаО и обусловлено главным образом присутствием глинистых минералов, особенно монтмориллонита, вермикулита, хлорита. В крупной фракции магний содержится в обломках доломитов, оливине, роговых обманках, пироксенах; в почвах аридной зоны много магния аккумулируется при засолении почв в виде хлоридов и сульфатов.

Калий. Содержание К2О составляет в почвах 2—3%. Присутствует калий чаще в глинистых минералах тонкодисперсных фракций, особенно в гидрослюдах, а также в составе таких первичных минералов крупной фракции, как биотит, мусковит, калиевые полевые шпаты. Наряду с кальцием калий относится к числу органогенов, необходимых для развития растений; в ряде случаев калий может быть в дефиците, в связи с чем его внесение в почву положительно сказывается на плодородии.

Натрий. Валовое содержание в почве Na2O обычно около 1—3%. В почве натрий главным образом присутствует в составе первичных минералов, преимущественно в натрийсодержащих полевых шпатах; содержание Na2O в отдельных составляющих крупной фракции может достигать 5—6%, тогда как в илистой фракции не превышает 0,5—1%. В засоленных почвах сухостепной и аридных зон в значительных количествах может присутствовать в виде хлоридов или входить в поглощающий комплекс почв, в связи с чем содержание Na2O в этом случае возрастает до нескольких процентов. В почве дефицита этого элемента обычно не наблюдается; присутствие натрия в повышенных количествах в составе подвижных соединений обусловливает наличие у почв неблагоприятных физических и химических свойств.

Титан. Содержание в почве TiO2 обычно не превышает нескольких десятых процента. Присутствует этот элемент в почве в составе первичных устойчивых к выветриванию титансодержащих минералов (ильменита, рутила, сфена), в связи с чем при выветривании наблюдается его относительное накопление, в некоторых случаях наблюдается заметное накопление титана (до 1%) в составе илистой фракции.

Марганец. Содержание МnО составляет в почве лишь несколько десятых или даже сотых долей процента и обусловлено присутствием марганцовистых конкреций, образовавшихся в результате микробиологической деятельности. В рассеянном виде марганец может входить в состав некоторых первичных минералов (оливинов, пироксенов, эпидота).

Сера. Содержание SO3 в почве обычно не превышает нескольких десятых процента. Присутствует сера в почве главным образом в составе различных органических соединений как растительного, так и животного происхождения; в засоленных почвах при наличии значительных количеств сульфатов валовое содержание SO3 может возрастать до нескольких процентов. Повышенное содержание серы в виде подвижных соединений может наблюдаться при загрязнении почв промышленными отходами (выпадение с осадками газообразных выбросов соединений серы). В крупных фракциях почвы сера присутствует в составе сульфидов (пирит), гипса, вторичных соединений железа (II), образующихся при болотном процессе.

Углерод, азот, фосфор. Эти элементы принадлежат к числу важнейших органогенов. Присутствие их в почве (первых двух практически целиком) обязано воздействию живого вещества и процессам почвообразования.

Углерод. В почве он содержится главным образом в составе гумуса, а также органических остатков. Много углерода может находиться в составе карбонатов. Содержание углерода в почве колеблется от долей процента в бедных органическим веществом песчаных почвах, до 3—5 и даже 10% в богатых гумусом черноземах (в торфянистых и торфяных горизонтах до десятков процентов). Значительная часть почв, используемых в земледелии, нуждается во внесении углерода в виде органического вещества.

Азот. Так же, как и углерод, азот почти целиком связан в почве с ее органической частью — гумусом — и составляет 1/10—1/20 от содержания углерода. Несмотря на небольшое количество (не более 0,3—0,4, часто 0,1 и менее процента), азот играет чрезвычайно важную роль в плодородии почв, так как жизненно необходим растениям, для которых он доступен только в форме нитратного и аммонийного ионов. Большинство культурных почв нуждается в систематическом внесении этого элемента. В естественных условиях пополнение в почве резервов азота в доступных для растений формах осуществляется азотофиксирующими бактериями.

Фосфор. Присутствует в почве в очень незначительных количествах: валовое содержание Р2О5 составляет не более 0,1 — 0,2%. Фосфор жизненно важен для растений, но в большинстве почв, особенно песчаных, находится в резком дефиците, в связи с чем необходимо систематическое внесение фосфора в почву, особенно при их интенсивном использовании в сельскохозяйственном производстве. В почве фосфор присутствует в составе гумуса, органических остатков, в минеральной части почв в составе апатита, вторичного болотного минерала — вивианита.

Наряду с перечисленными макроэлементами в почве в очень небольших количествах (тысячные доли процента) присутствуют рассеянные элементы и микроэлементы, чрезвычайно, однако, важные для жизнедеятельности растений. Валовое содержание этих элементов в преобладающей мере связано с содержанием в почве первичных минералов, отчасти глинистых минералов и органического вещества.

Наблюдается следующая приуроченность важнейших микроэлементов и рассеянных элементов к первичным минералам:

Ni, Co, Zn — авгит, биотит, ильменит, магнетит, роговая обманка;

Сu — авгит, апатит, биотит, гранаты, калиевые полевые шпаты, плагиоклазы;

V — авгит, биотит, ильменит, мусковит, роговая обманка, сфен;

Рb — авгит, апатит, биотит, калиевые полевые шпаты, мусковит;

Li — авгит, биотит, роговая обманка, турмалин;

В — турмалин;

Zr —циркон; редкоземельные элементы — эпидот, монацит.

Носителями микроэлементов и рассеянных элементов в крупной фракции почв могут быть также зерна кварца и обломков содержащих кварц пород, так как в них нередко встречаются субмикроскопические вкрапления перечисленных первичных минералов.

Химический состав почв оказывает чрезвычайно большое влияние на их плодородие, как непосредственно, так и определяя те или иные свойства почвы, имеющие решающее значение в жизни растений. С одной стороны, это может быть дефицит тех или иных элементов питания растений, например фосфора, азота, калия, железа, некоторых микроэлементов; с другой — токсичный для растений избыток, как в случае засоления почв.

В процессе почвообразования происходят весьма существенные преобразования химического состава исходных почвообразующих пород, связанные с целой серией общих почвенных процессов:

1) переход химических элементов из одних соединений в другие в связи с минеральными преобразованиями:

2) поступление элементов из атмосферы с осадками и импульверизацией;

3) вынос элементов нисходящим движением воды в грунтовые воды и далее в гидрографическую сеть, в конечном счете в океан;

4) принос элементов с грунтовыми водами;

5) циклическое вовлечение элементов в биологический круговорот веществ

Поэтому профиль почв всегда дифференцирован в той или иной степени по химическому составу в отличие от исходных однородных почвообразующих пород Особой спецификой состава отличаются верхние гумусоаккумулятивные горизонты, а также гидрогенноаккумулятивные горизонты разных почв

Химические процессы, протекающие в почвах, весьма сложны и многообразны Их изучением занимается особый раздел почвоведения — химия почв

ОРГАНИЧЕСКОЕ ВЕЩЕСТВО ПОЧВ

Органическое вещество почв — это совокупность живой биомассы и органических остатков растений, животных, микроорганизмов, продуктов их метаболизма и специфических новообразованных органических веществ почвы — гумуса 

В органическом веществе почв всегда присутствует какое-то количество остатков отмерших организмов, находящихся на разных стадиях разложения, живые клетки микроорганизмов, почвенная фауна

Роль разных групп организмов в процессах трансформации органического вещества в почве.

Бактерии активно участвуют в трансформации органического вещества во всех почвах. Они способны разлагать почти все органические соединения. Эти микроорганизмы с помощью своих экзоферментов как источник пищи и энергии активно используют белок, простые сахара, крахмал, органические кислоты, спирты, альдегиды, разлагают клетчатку и имеют преимущество в разложении углеводов. Бактерии имеют узкий спектр ферментов, как бы специализируются в области узкого процесса и разрушение ведут с большой скоростью. Например, целлюлозу разлагают различные виды бактерий родов Cytophaga, Clostridium, Celvibrio и др., которые синтезируют ферменты целлюлазу и целлобиазу; крахмал — бактерии видов Clostridium acetobutilicum, Bacillus subtilis, Вас. mesentericus и др., которые выделяют ферменты амилазу и глюкозидазу.

Актиномицеты, как и бактерии, — в основном почвенные организмы, активно участвующие в разложении органического вещества. Они могут использовать любые углеводы, в том числе активно разрушают маннаны, ксиланы, пектиновые вещества, целлюлозу, кератин, хитин, могут разрывать длинные цепи жирных кислот и углеводородов. Актиномицеты рода Nocardia с помощью фермента фенолоксидазы разлагают гумус с утилизацией азота гетероциклов.  

Актиномицеты — многочисленная группа микроорганизмов, но менее конкурентоспособная, чем бактерии и грибы. Они существуют в почве длительное время как покоящиеся споры и растут тогда, когда появляются доступная пища, необходимый уровень температуры (5—10°С) и влажности (91,5—99%). Особенно большую роль они играют в трансформации органического вещества черноземов.

Грибы обладают большим спектром ферментов, способны совершать многие процессы трансформации органического вещества, но, как правило, с меньшей скоростью, чем бактерии. В то же время разложение ароматических соединений грибы ведут активнее, чем бактерии; расщепление лигнина и танинов в природе идет преимущественно под их воздействием. Грибы осуществляют и разложение гумуса. Функции грибов определяются стадией сукцессии, стадией изменения видового состава микробоценоза, зависящей от способности организмов, его составляющих, к переработке и использованию тех или иных компонентов субстрата. Грибы-сахаролитики обычно выступают пионерами в процессе распада органического вещества. За ними следуют грибы, разрушающие флоэму растительных клеток (первичные сапрофиты). Вторичные сапрофиты разрушают эпидермис клеток. Медленнее всего происходит разрушение целлюлозы и особенно лигнина.

Почвообитающие водоросли — автотрофы; они участвуют в создании органического вещества почв. Запасы органического вещества, созданного водорослями, составляют от 0,05 до 0,2% от его общего запаса в верхнем почвенном горизонте. Основная масса водорослей обитает на поверхности или в самых верхних слоях почвы. На глубине 10—20 см количество водорослей становится ничтожным. Клетки водорослей, как и других микроорганизмов, активно поедаются амебами, инфузориями, клещами, нематодами. Прижизненные выделения водорослей, их слизевые чехлы становятся пищей грибов и бактерий. Водоросли выделяют биологически активные вещества.

Почвенные беспозвоночные животные выполняют серию сложных функций в разложении органического вещества, осуществляя физическое (механическое) раздробление и измельчение растительных остатков, увеличивая в сотни и тысячи раз их поверхность, делая их доступными для дальнейшего разрушения грибами и бактериями. В их ротовой полости идет мацерация растительных тканей, что вызывает распад клеточных структур. Беспозвоночные затаскивают растительные остатки в глубь почвы и способствуют ее оструктуриванию и аэрации, гомогенизации и образованию органоминеральных соединений.

Беспозвоночные животные разлагают почти все химические компоненты растительных остатков благодаря симбиозу с микроорганизмами и широкому спектру ферментов в пищеварительном тракте, что ускоряет процесс трансформации органического вещества.

Экскременты беспозвоночных образуют локусы повышенной биологической активности, где процессы в почвах идут быстрее и многообразнее, так как в них участвуют бактерии, актиномицеты, грибы, плотность которых в десятки раз выше, чем в окружающей почве (Козловская, 1978).

Позвоночные животные составляют не более 2% от общей зоомассы, но продукты их метаболизма могут играть заметную роль в биологическом круговороте веществ, а обитающие в почве виды оказывают воздействие на физические свойства почв и перемещение почвенной массы.

ОБРАЗОВАНИЕ ОРГАНИЧЕСКИХ ВЕЩЕСТВ В ПОЧВЕ (ГУМУСООБРАЗОВАНИЕ)

Процесс гумификации, по Дюшофуру, имеет две фазы.

Первая — биологическая, относительно короткая, в которой господствуют микроорганизмы и их энзимы, завершается образованием «молодого гумуса» с незрелыми связями с минеральной частью почвы.

Вторая — фаза созревания — климатическая, более продолжительная и обусловленная сезонными контрастами климата, завершается формированием зрелого гумуса и упрочением связей с минеральной частью почвы.

Гумусовые вещества как специфический продукт гумификации представляют собой гетерогенную полидисперсную систему высокомолекулярных азотсодержащих ароматических соединений кислотной природы.

Они представлены гуминовыми кислотами, фульвокислотами и негидролизуемым остатком или гумином.

Гумусовые кислоты — особый класс соединений с переменным составом. В пределах этой общей группы гуминовые кислоты и фульвокислоты сохраняют общий принцип строения. Их высокомолекулярный характер обусловливает практическую независимость основных физических и химических свойств от небольшого изменения состава.

Гуминовые кислоты (ГК) хорошо растворяются в щелочных растворах, слабо растворяются в воде и не растворяются в кислотах. Гуминовые кислоты, выделенные из почвы в виде сухого препарата, имеют темно-коричневый или черный цвет, среднюю плотность 1,6 г/см3.

Фульвокислоты (ФК) — группа гумусовых кислот, остающаяся в растворе после осаждения гуминовых кислот. Они так же, как и ГК, представляют собой высокомолекулярные азотсодержащие органические кислоты. От гуминовых кислот отличаются светлой окраской, более низким содержанием углерода, растворимостью в кислотах, большей гидрофильностью и способностью к кислотному гидролизу. Плотность фульвокислот по имеющимся немногочисленным данным равна 1,43—1,61 г/см3.

ЭКОЛОГИЧЕСКАЯ РОЛЬ ГУМУСА

1. Развивая учение В. И. Вернадского о биосфере, В. А. Ковда подчеркивает общепланетарную роль почв, в частности, как аккумулятора органического вещества и связанной с ним энергии, способствующих устойчивости биосферы. Он предложил считать гумусовый слой почв планеты особой энергетической оболочкой — гумосферой.

Вопрос стабилизации и увеличения запасов гумуса в почвах — актуальный вопрос современного земледелия. Важность этой задачи определена многосторонней ролью органического вещества в устойчивости плодородия почв.

2. Физические свойства почв тесно связаны с процентным содержанием и запасами органического вещества. По данным И. В. Кузнецовой, повышение содержания гумуса в дерново-подзолистых почвах от 2,5—3 до 5—6% приводит к увеличению водопрочных агрегатов в пахотном слое до 50%, общей порозности до 55—60%, наименьшей влагоемкости до 43—44%, диапазона активной влаги до 20—25%.

3. Почвы с высоким содержанием гумуса быстрее просыхают весной и раньше пригодны к обработке, требуют меньше затрат на механическую обработку. Эксплуатационные расходы на высокогумусных почвах сокращаются при возрастании производительности почвообрабатывающих агрегатов. Увеличение содержания органического вещества ведет к снижению равновесной плотности почв, что создает условия для минимализации обработок при повышении их интенсивности.

4. Физико-химические свойства почв, такие, как емкость поглощения, буферность, находятся в тесной корреляции с содержанием органического вещества: по данным А. М. Лыкова, коэффициент корреляции между этими свойствами (r) составляет 0,64.

5. Органическое вещество является источником многих питательных компонентов и прежде всего азота: 50% азота растения берут из почвенных запасов. Одновременно оно служит основой создания оптимальных условий для эффективного использования высоких доз минеральных удобрений.

6. По данным Т Н. Кулаковской (1978), повышение гумусированности пахотных почв БССР от 1 до 2,2% повысило эффективность минеральных удобрений в 3 раза. Увеличение содержания гумуса с 1,5 до 4,5—5% повысило коэффициент использования фосфора более чем в 10 раз (с 2,3 до 24—26%).

Органическое вещество почв снижает побочное отрицательное действие химических удобрений, способствует закреплению их излишка и нейтрализации вредных примесей

7. Органическое вещество почв содержит большое количество физиологически активных веществ. Это подтверждено работами А.В.Благовещенского и Л. А. Христевой (СССР), С. Прата (ЧССР), П. Гуминского (ПНР), П. Декока (Шотландия), Р. Шаминада (Франция), В. Фляйга (ФРГ).

8. Содержание органического вещества, особенно подвижной его части, определяет интенсивность поступления СО2 в приземный слой воздуха, что позволяет наращивать интенсивность фотосинтеза растений. Почвы с высокой биологической активностью, как правило, способны производить более высокий урожай полевых культур.

9. Оптимизация гумусного состояния почв предполагает разработку таких приемов хозяйственной деятельности, которые могут создать условия для получения высокого и устойчивого урожая без деградации почвенного плодородия. С этих позиций органическое вещество почвы делят на мобильное, обеспечивающее эффективное плодородие, высокий текущий урожай культур, их отзывчивость на агромероприятия, и стабильное, обусловливающее устойчивость плодородия почв, урожаев и свойств почв в многолетнем цикле.

К первой группе относят свежий опад растений, растительные остатки, вещества индивидуальной природы, легкоминерализующиеся части гумусовых веществ.

Ко второй группе — специфические гумусовые вещества.

Оптимальное гумусовое состояние почв определяется комплексом показателей. Важнейшим являются следующие: содержание органического вещества, его запасы, обогащенность его азотом (C:N), обогащенность кальцием, тип гумуса (СГК:СФК), уровень варьирования этих показателей.

Гумусное состояние служит важным показателем плодородия почв и их устойчивости как компонента биосферы. Отдельные его параметры служат объектом мониторинга окружающей среды.

ПОГЛОТИТЕЛЬНАЯ СПОСОБНОСТЬ ПОЧВ

Это способность почв задерживать, поглощать твёрдые, жидкие, газообразные вещества, которые находятся в соприкосновении с твёрдой частью почв (фильтрация воды).

Зависимость от причины определяющей поглощение; различают типы поглотительной способности почвы: механическая, молекулярно – сорбционная (физическая), ионно – сорбционная (обменная).

1) Механическая – проявляется при фильтрации воды, когда в почвенных порах и капиллярах задерживаются относительно крупные частицы, взвешенные в воде (глинистые, песчаные, орг. детрит и пр.).

Это явление широко используется в фильтрах по очистке воды.

2) физическая (мол. – соркционная ) представляет собой увеличение концентрации молекул различных веществ в растворе. Это обусловлено притяжением отдельных молекул к поверхности почвенных частиц в результате действия поверхностной энергии. Сорбированные таким образом молекулы не переходят в состав твёрдых частиц, а лишь концентрируются у их поверхности.

3) Обменная – заключается в обмене ионов, адсорбированных почвой на ионы почвенного раствора. Изменение ионного состава почвенного раствора вызывает соответственно изменения в составе поглощённых ионов. В основном распространён процесс поглощения катионов почвы. Различные почвы имеют свою ёмкость поглощения катионов. Пример поглотительной способности катионов дерново – подзолистой почвы:10-30 мг – эквивалент на 100 г

Серые лесные: 20 – 40 мг-экв. на 100 гр. почвы. Поглотительная способность почвы обуславливается содержанием и минералогическим составом высокодисперсной части почвы и материнских пород. Глинистые, тяжёлые почвы имеют большую ёмкость поглощения, в отличие от песчаных.

КИСЛОТНОСТЬ И ЩЕЛОЧНОСТЬ ПОЧВ

КИСЛОТНОСТЬ ПОЧВ

Различают актуальную (активную) и потенциальную кислотность почв в зависимости от того, при каком взаимодействии она проявляется и измеряется.

Актуальная кислотность почвы обусловлена наличием водородных ионов (протонов) в почвенном растворе, активность которых зависит от свойств (ионной силы) раствора, влияющих на коэффициент активности иона.

Иногда рН почвы измеряют непосредственно в почве при естественной влажности, но для этого она должна быть достаточно увлажненной и гомогенной для обеспечения надежного контакта с измерительным электродом.

Потенциальная кислотность — способность почвы при взаимодействии с растворами солей проявлять себя как слабая кислота.

Потенциальная кислотность определяется свойствами твердой фазы почвы, обусловливающей появление дополнительного количества протонов в растворе при взаимодействиях с удобрениями или химикатами.

В природе распространение кислых почв связано с определенными условиями почвообразования (подзолистые, бурые лесные, красноземы, желтоземы).

Кислая реакция почв неблагоприятна для большинства культурных растений и полезных микроорганизмов. Кислые почвы обладают плохими физическими свойствами. Из-за недостатка оснований органическое вещество в этих почвах не закрепляется, почвы обеднены питательными веществами.

Основным методом повышения продуктивности кислых почв, снижения их кислотности служит известкование

При внесении извести СаСО3 при наличии избытка углекислоты переходит в растворимый Са(НС03)2, который взаимодействует с почвой.

ЩЕЛОЧНОСТЬ ПОЧВ

Щелочная реакция почвенных растворов и водных вытяжек может быть обусловлена различными по составу соединениями: карбонатами и гидрокарбонатами щелочных и щелочно-земельных элементов, силикатами, алюминатами, гуматами натрия.

Различают актуальную (активную) и потенциальную щелочность почвы.

Актуальная щелочность обусловлена наличием в почвенном растворе гидролитически щелочных солей, при диссоциации которых образуется в значительных количествах гидроксильный ион.

Потенциальная щелочность проявляется у почв, содержащих поглощенный натрий. При взаимодействии почвы с углекислотой поглощенный натрий в почвенном поглощающем комплексе замещается водородом и появляется сода, которая подщелачивает раствор.

Сильнощелочная реакция неблагоприятна для большинства растений. Высокая щелочность обусловливает низкое плодородие многих почв, неблагоприятные физические и химические их свойства.

При рН около 9—10 почвы отличаются большой вязкостью, липкостью, водонепроницаемостью во влажном состоянии, значительной твердостью, цементированностью и бесструктурностью в сухом состоянии.

Химическая мелиорация щелочных почв производится путем внесения гипса, нитратов кальция или материалов, содержащих гипс, серную кислоту, сульфат железа, пиритовые огарки или серу.

БУФЕРНОСТЬ ПОЧВЫ

Буферностью называется способность почвы противостоять изменению ее актуальной реакции под воздействием различных факторов.

Различают буферность почв против кислотных и буферность против щелочных агентов.

Буферные свойства почв связаны с поглощением и вытеснением ионов, с процессами перехода соединений в молекулярные или ионные формы, с нейтрализацией и выпадением в осадок образующихся в почве соединений.

Буферность почвы определяется свойствами ее твердой фазы, главным образом почвенных коллоидов.

Высокой буферностью в отношении кислот и низкой — против щелочей — отличаются гумусированные маловыщелоченные, богатые углекислыми солями почвы степных, полупустынных и пустынных областей.

Высокой буферностью против щелочных агентов обладают глинистые почвы, содержащие значительные количества обменных Н+ и Аl3+ и кислых гумусовых соединений.

Буферная способность является одним из элементов почвенного плодородия. Она позволяет сохранять благоприятные для растений свойства почв.

ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ ПРОЦЕССЫ В ПОЧВАХ

Почва — это сложная окислительно-восстановительная система. В ней присутствует большое количество разнообразных веществ минеральной и органической природы, способных вступать в реакции окисления и восстановления, благодаря чему в ней активно протекают окислительно-восстановительные процессы, оказывающие существенное влияние на ход почвообразования.

С окислительными реакциями связаны процессы гумификации растительных остатков; с реакциями как окисления, так и восстановления — изменение степени окисленности железа, марганца, азота, серы и других элементов.

Реакции окисления и восстановления всегда протекают одновременно. В них участвуют два или несколько веществ, одни из которых теряют электроны и окисляются (реакция окисления), другие приобретают электроны и восстанавливаются (реакция восстановления).


 

А также другие работы, которые могут Вас заинтересовать

7411. Відставка державного службовця в Україні та порядок її здійснення 235 KB
  Вступ Реалізація положень Конституції України і успішне здійснення завдань держави, пов’язаних із її розвитком, соціально-економічними і ринковими перетвореннями, значною мірою залежить від професійного та сумлінного виконання державними ...
7412. Юридична відповідальність державних службовців 82.5 KB
  Юридична відповідальність державних службовців. Дисциплінарна відповідальність. Кримінальна відповідальність. Адміністративна відповідальність. Відповідальність за заподіяну шкоду. Відповідальність за корупційні діяння та інші...
7413. Відповідальність державних службовців за інші правопорушення, повязані з корупцією 301.5 KB
  Мета даної роботи - розкрити поняття, зміст, основні характеристики та властивості інших правопорушень, пов’язаних з корупцією в галузі державної служби, а також по можливості визначити місце цих понять в системі українського законодавства.
7414. Сумматоры с параллельным переносом 126.5 KB
  Тема: Сумматоры с параллельным переносом Сумматоры с параллельным переносом - сумматоры, в которых сложение выполняется как поразрядная операция. Применяются в устройствах с высоким быстродействием микроопераций сложения. При этом старают...
7415. Методы изготовления и прокладки оптических кабелей 168 KB
  Методы изготовления и прокладки оптических кабелей. Технологический процесс изготовления оптического кабеля базируется на основных принципах кабельной технологии. Однако для практической реализации разнообразных конструкций ОК, обладающих отличитель...
7416. Программируемые логические матрицы 240 KB
  Тема: Программируемые логические матрицы Программируемая логическая матрица (ПЛМ) - это универсальная структура, позволяющая запрограммировать систему булевых функций путем организации связи между вертикальными и горизонтальными шинами. Набор э...
7417. Соединение оптических волокон 645 KB
  Соединение оптических волокон Соединение оптических волокон является наиболее ответственной операцией при монтаже кабеля, предопределяющей качество и дальность связи по ВОЛС. Соединение волокон и монтаж кабелей производятся как в процессе производст...
7418. Микропроцессоры (МП) и их характеристика 83.5 KB
  Тема: Микропроцессоры (МП) Микропроцессорами называются цифровые устройства, осуществляющие вычисления в соответствии с заданным законом функционирования, которые выполнены в виде интегральной схемы. Микропроцессоры (МП) по применимости класси...
7419. Синтез управляющих автоматов. Таблица переходов автомата Мили 82 KB
  Тема: Синтез управляющих автоматов. Таблица переходов автомата Мили. Таблица переходов используется для построения комбинационных частей автомата Мили, в частности - для определения функций возбуждения элементов памяти и определения функций вых...