2449

Принципы линейного моделирования

Курсовая

Экономическая теория и математическое моделирование

Вывод нелинейной математической модели. Формулировка системы допущений. Модель статики. Исследование нелинейной модели в динамическом режиме. Линеаризация полученной нелинейной модели в динамке и сравнение линейной и нелинейной моделей. Вывод линеаризованной модели в динамике.

Русский

2013-01-06

435.24 KB

26 чел.

Содержание

1. Описание процесса 3

2. Вывод нелинейной математической модели 4

2.1. Формулировка системы допущений 4

2.2. Модель статики 4

3. Исследование нелинейной модели в динамическом режиме 9

4. Линеаризация полученной нелинейной модели в динамке и сравнение линейной и нелинейной моделей. 14

Вывод линеаризованной модели в динамике. 14

Список литературы 21


1. Описание процесса

Объект моделирования – две гидравлические ёмкости, соединенные последовательно с замкнутыми геометрическими пространствами над жидкостью с притоком ниже уровня жидкости в аппарате и естественным стоком при атмосферном давлении.

Q2

Q3

Р1

Ратм

Р2

Р

Q1

h2

3

2

h1

1

Рисунок 1 – Объект моделирования

P1 – избыточное давление на входе в первую емкость;

Q1 – расход на входе в первую ёмкость;

Р – давление газа в трубке;

Р2 – сумма гидростатического давления уровня жидкости в первой емкости и давления газа в соединительной трубе;

Q2 – расход на стоке;

Q3 – промежуточный расход;

h1 – высота уровня жидкости в первой емкости;

h2 – высота уровня жидкости во второй емкости;

α1 – коэффициент расхода на входе;

α2 – промежуточный коэффициент расхода;

α3 – коэффициент расхода на стоке.

Описание процесса

Жидкость подается в ёмкости под давлением P1. За счет этого в ёмкостях создается необходимый уровень, который регулируется при помощи изменения коэффициентов расходов α1, α2, α3. Таким образом, главными выходными параметрами системы являются высоты уровней h1, h2.

Цели моделирования:

  1.  Сравнить нелинейную и линейную модели при различных номинальных режимах.
  2.  Оценить влияние параметров объекта моделирования на его статические и динамические характеристики (геометрические размеры, давление в камере, неуравновешенное усилие от потока среды).

2. Вывод нелинейной математической модели

2.1. Формулировка системы допущений

Для построения математической модели примем следующие допущения:

  1.  Считаем плотность жидкости ж постоянной величиной, при постоянной температуре, т. к. жидкости мало сжимаемы и имеют малый объемный коэффициент расширения, что позволяет не рассматривать изменение плотности жидкости ж при изменении давления.
  2.  Температуры жидкости и воздуха в емкости считаем постоянными, что позволяет пренебречь изменениями давления воздуха при колебаниях температуры и считать температуру, при которой емкость заполняется жидкостью равной температуре, при которой объект работает (температуры окружающей среды малы).
  3.  Давление на выходе из трубопровода – атмосферное, принимаем его за ноль.
  4.  Давление Р1 – постоянно.
  5.  Для емкостей выбираем цилиндрическую форму, при которой площадь поперечного сечения постоянна, что позволит не учитывать изменение площади поперечного сечения емкостей с изменением высоты.
  6.  Других гидравлических сопротивлений, кроме ёмкостей и вентилей регулирования расхода, нет.
  7.  Утечки из емкостей отсутствуют.

2.2. Модель статики

Для расчетов по математическим моделям принимаем следующие числовые значения:

Задаемся расходами Q1, Q2  и Q3  , давлением P1, значениями уровней h1 и h2, Н1, Н2, радиусами емкостей r1, r2 и находим коэффициенты α, давление Р, площади сечений емкостей S1, S2:

r = r1 = r2 = 1,5м

S = S1 = S2 = π·r2 м2   S = 3.14·(1,5)2 = 7.065

Н1 = Н2 = 10м

Из закона PV=P1V1, выразим давление газа P в трубке.

Для первого состояния (когда емкости не заполнены жидкостью)

P1·V=M·R·T  (1), здесь

P1 – давление газа до заполнения емкости, оно равно атмосферному давлению Paтм,

V – суммарный объем емкостей, V= V1+V2, V1=S1·H1, V2=S2·H2

H – высота емкости,

S – площадь сечения емкости,

M- масса воздуха,

R-газовая постоянная воздуха,

T-температура воздуха.

Для второго состояния (когда емкости заполнены жидкостью)

P2·V`=M·R·T  (2), здесь

V` - объем газа после заполнения емкостей жидкостью

V`=V1`+V2`=S1(H1-h1)+S2(H2-h2)

h-уровень жидкости в емкости.

Так как масса газа не изменяется (нет утечек, растворения газа в воде и т. д.), температура постоянна, состав газовой смеси не изменяется (M=const), то из (1) и (2) получим:

Paтм (S1·H1+S2·H2) = P2 (S1 (H1-h1) +S2· (H2-h2))  (3)

Из (3) выразим нужное нам давление Р:

Материальный баланс в статике:

Q1 = Q2 = Q3

Приравняв к нулю члены с производными по времени, получаем систему уравнений, описывающую статику объекта:

Q1 = Q2

Q2 = Q3

Нахождение коэффициентов расхода α1, α2, α3 в номинальном режиме:

 

Из системы уравнений выразим параметр уровня, который требуется определить в статике.

Для решения системы уравнений используем пакет Mathcad.

Зависимость уровней h1, h2, P при изменении  коэффициента расхода α1.

Таблица 1.

, 

±∆

α2  

α3  

P1, Па

h1, м

h2, м

P, Па

10%

0,803

4,243

0,692

600000

7,772

6,851

269350

5%

0,847

4,243

0,692

600000

7,892

6,930

286250

ном.

0,892

4,243

0,692

600000

8,000

7,000

300000

-5%

0,937

4,243

0,692

600000

8,094

7,058

312541

-10%

0,981

4,243

0,692

600000

8,176

7,107

323998

6

6,5

7

7,5

8

8,5

0,803

0,847

0,892

0,937

0,981

h1(α1)

h2(α1)

, 

h, м

Рис. 1. – Зависимость уровней h1 и h2 от коэффициента α1.

0

50000

100000

150000

200000

250000

300000

350000

0,803

0,847

0,892

0,937

0,981

P(α1)

P, Па

, 

Рис. 2. – Зависимость давления газа P от коэффициента α1.

Зависимость уровней h1, h2, P при изменении  коэффициента расхода α3.

Таблица 2

, м

,

, м

,

,

, Па

, Па

10%

7,709

0,892

6,809

4,243

0,7612

600000

264830

5%

7,859

0,892

6,909

4,243

0,7266

600000

282263

ном.

8,000

0,892

7,000

4,243

0,692

600000

300000

-5%

8,130

0,892

7,080

4,243

0,6574

600000

317537

-10%

8,252

0,892

7,152

4,243

0,6228

600000

335161

0

1

2

3

4

5

6

7

8

9

0,7612

0,7266

0,692

0,6574

0,6228

h1(α3)

h2(α3)

, 

h, м

Рис. 3. – Зависимость уровней h1 и h2 от коэффициента α3.

0

50000

100000

150000

200000

250000

300000

350000

400000

0,7612

0,7266

0,692

0,6574

0,6228

P(α3)

P, Па

, 

Рис. 4. – Зависимость давления газа P от коэффициента α3

Выводы по графикам статических характеристик:

Как видно из графиков, зависимость значения уровней жидкости h1 и h2 и давления газа P от изменения значений коэффициентов гидравлического сопротивления α1 и α3 носит нелинейный характер, хотя нелинейность выражена очень слабо.

При изменении заданного номинальных значений коэффициентов гидравлического сопротивления α1 и α3 в диапазоне ±10 % значения уровней жидкости h1 и h2 не достигают предельных значений, соответствующих нулевому значению уровней и максимальной высоте емкости .

3. Исследование нелинейной модели в динамическом режиме

Материальный баланс в динамике:

Допустим, что изменился во времени один из входных потоков:

Так как приращения не равны, то в емкостях будет накапливаться жидкость.

Δm1 = (Q1 Q2)Δt

Δm2 = (Q2 Q3)Δt

Δm1 = ρSΔh1

Δm2 = ρSΔh2

За время t в емкостях накопится:

Так как

То получим баланс вещества в приращениях в динамике:

расходы, входящие в это выражение:

Подставив полученные выражения в формулу баланса в приращениях, получим математическую модель вещества в динамике:

Таким образом, получили систему дифференциальных уравнений динамики системы:

Исследование зависимости значений уровней h1 и h2 в соответствующих емкостях от изменения коэффициентов расхода α1, α3 в динамике:

Для решения нелинейных дифференциальных уравнений используем функцию «rkfixed», пакета MathCAD, данная функция реализует решение задачи на отрезке методом Рунге – Кутта с постоянным шагом.

Синтаксис функции «rkfixed»:

Где

– возвращаемая функцией «rkfixed» матрица решений, состоящая из столбцов (где - количество уравнений в системе) и строк, в первом столбце находятся значения переменной, во втором и последующих столбцах соответствующие значения приближенного решения;

– вектор начальных условий;

– начальная точка отрезка;

– конечная точка отрезка;

– число узлов на отрезке ;

– векторная функция правых частей уравнений системы.

Найдем зависимость значений уровней h1 и h2 при изменении значения коэффициента расхода α1 в интервале ± 10% от номинального режима в динамике, при изменении времени от 0 до 2000 сек.

Пример записи в пакете MathCAD для номинального режима:

Таким же образом записываем для α1: , ,,.

Аналогично находим зависимости значений уровней h1 и h2 при изменении значения коэффициента пневматического сопротивления α3 в интервале ± 10% от номинального режима в динамике, при изменении времени от 0 до 2000 сек.

Графики зависимостей значений уровней h1 и h2 при изменении значений коэффициентов пневматического сопротивления α1, α3 в динамике.

,

м

с        

, с        

+10%  

+5%      

0%      

-5%      

-10%  

Рис. 5. – Зависимость уровня от коэффициента .

,

м

с        

, с        

+10%  

+5%      

0%      

-5%      

-10%  

Рис.6. – Зависимость уровня от коэффициента .

, с        

+10%  

+5%      

0%      

-5%      

-10%  

+10%  

+5%      

0%      

-5%      

-10%  

Па        

Рис. 7. – Зависимость давления газа от коэффициента .

, с        

, м

с        

Рис. 8. – Зависимость уровня от коэффициента .

+10%  

+5%      

0%      

-5%      

-10%  

, с        

,

м

с        

Рис. 9. – Зависимость уровня от коэффициента .

, с        

+10%  

+5%      

0%      

-5%      

-10%  

Па        

Рис. 10. – Зависимость давления газа от коэффициента .

4. Линеаризация полученной нелинейной модели в динамке и сравнение линейной и нелинейной моделей.

Вывод линеаризованной модели в динамике

Линеаризация дифференциального уравнения, описывающего динамику изменения значения уровня жидкости в первой емкости.

,

где  

 

Величины , , , , соответствуют значениям величин в заданном статическом режиме. Величины , , , и соответствуют приращению величин во времени.

Линеаризация производится путем разложения в ряд Тейлора полученного нелинейного дифференциального уравнения и дальнейшим отбрасыванием малых величин большего порядка малости.

Линеаризуя первое дифференциальное уравнение получим:

                              (1)

Находим коэффициенты , , , , , выполнив следующее:

Обозначим правую часть нелинейного дифференциального уравнения следующим образом:

Находим частные производные по каждому входному воздействию.

 

     

Перенесем член в левую часть уравнения (1):

Поделим правую и левую части уравнения (1) на  :

Введем новые обозначения:

      

     .

С учетом новых обозначений получим первое линеаризованное уравнение:

Линеаризация дифференциального уравнения, описывающего динамику изменения значения уровня жидкости во второй емкости.

 

где   

 

 

 

Величины , , и соответствуют значениям величин в заданном статическом режиме. Величины , , и соответствуют приращению величин во времени.

Линеаризация производится путем разложения в ряд Тейлора полученного нелинейного дифференциального уравнения и дальнейшим отбрасыванием малых величин большего порядка малости.

Линеаризуя второе дифференциальное уравнение получим:

                                       (2)

Находим коэффициенты , , , , выполнив следующее:

Обозначим правую часть нелинейного дифференциального уравнения следующим образом:

.

Находим частные производные по каждому входному воздействию.

     

      

Перенесем член в левую часть уравнения (2):

Поделим правую и левую части уравнения на  :

Введем новые обозначения:

     .   

С учетом новых обозначений получим второе линеаризованное уравнение:

Линейная модель объекта в динамике имеет следующий вид:

Для решения системы линейных дифференциальных уравнений, соответствующей линейной модели объекта в динамике, используем функцию «rkfixed», пакета Mathcad.

Пример записи решения в пакете MathCAD:

Построение зависимостей значений уровней и и давления газа от изменений значений коэффициентов гидравлического сопротивления и для нелинейной и линеаризованной моделей.

м       

         

— —

         

— —

, с        

Рис. 11. –  Зависимость уровней и от коэффициента , при его увеличении на 10% в динамике.

, с        

         

— —

         

— —

м       

Рис. 12. –  Зависимость уровней и от коэффициента, при его увеличении на 10% в динамике.

 

         

, с        

Рис. 13. – Зависимость давления газа от коэффициентов и при их увеличении на 10% в динамике.

Полученная линейная модель объекта в динамике достаточно точная, поэтому в случае проектирования системы автоматического регулирования для данного аппарата предпочтительнее будет использовать линеаризованную модель.


Список литературы

  1.  Моделирование процессов и систем: Учеб.пособие /В.Л. Волков; Нижегород. гос. тех. ун-т. Н.Новгород, 2005 – 80 с.
  2.  Советов Б. Я., Яковлев С. А.  Моделирование систем: Учеб. для вузов — 3-е юд., перераб. и доп. — М.: Высш. шк., 2001. — 343 с: ил.
  3.  Авдеев О.Н., Мотайленко Л.В. Моделирование систем: Учебное пособие. СПб.: Изд-во СПбГТУ, 2001.
  4.  Романовский П. И., Игнатьева А. В., Краснощекова Т. И., Смирнов В. Ф. Курс высшей математики: Учебное пособие. – М.: Высшая школа, 1964. – 684 с.

 

А также другие работы, которые могут Вас заинтересовать

19535. Дискретное преобразование Фурье (ДПФ) 487.85 KB
  2 Лекция 4. Дискретное преобразование Фурье ДПФ В данной лекции установим свойства дискретного преобразования Фурье аналогичные свойствам непрерывного преобразования. Как обычно преобразования типа почленного интегрирования ряда перестановки порядка с
19536. Цифровые фильтры. Основные понятия 489.7 KB
  2 Лекция 5. Цифровые фильтры. Основные понятия Цифровые фильтры являются частным случаем линейных инвариантных систем. Существенное ограничение связано с физической реализуемостью системы. Определение. Система называется физически реализуемой если сигн...
19537. Z-преобразование. Фильтры первого порядка 192.23 KB
  2 Лекция 6. Zпреобразование. Фильтры первого порядка Zпреобразование Иногда вместо преобразования Фурье используют Zпреобразование. Оно определяется формулой 1 В формуле 1 ряд является формальным если же он сходится то определяет аналитическую ф...
19538. Фильтры второго и высших порядков 452.79 KB
  1 Лекция 7. Фильтры второго и высших порядков Определение фильтра второго порядка Примером фильтра вторго порядка является фильтр . Рассматриваем только вещественный случай. Переходя к Z преобразованию получим: . Найдя корни многочлена в знаменателе пере
19539. Фильтры Баттеруорта 297.97 KB
  2 Лекция 8. Фильтры Баттеруорта Отыскание параметров фильтра В левой и правой частях в знаменателе находятся многочлены от переменной z. Найдем корни этих многочленов. Множество корней по построению инвариантно относительно замены . Для устойчивости фильтр...
19540. Осциллятор. FIR фильтры 500 KB
  3 Лекция 9. Осциллятор. FIR фильтры Полосовой фильтр на основе фильтра низких частот В предыдущей лекции было показано каким образом можно построить различные фильтры. Оказывается любой из таких фильтров можно получить на основе фильтра низких частот с помо...
19541. Квадратурный зеркальный фильтр 372.27 KB
  2 Лекция 10. Квадратурный зеркальный фильтр Проектирование FIR фильтра на основе аппроксимации Рассмотрим симметрический фильтр с передаточной функцией. 1 Пусть задана вещественная передаточная функция. Положим. В результате замены имеем взаимно од
19542. WaveLet- преобразования 322.83 KB
  2 Лекция 11. WaveLet преобразования WaveLetпреобразование является альтернативой преобразованию Фурье в тех случаях когда сигнал не носит периодического характера. Различают непрерывное и дискретное WaveLetпреобразования. Предполагается что все интегралы рассмот...
19543. Wavelet фильтрация 356.85 KB
  1 Лекция 12 Wavelet фильтрация Детализация сигнала Введем обозначение: для любой функции . Положим . Предложение. Если выполнено условие ортогональности то при фиксированном функции образуют ортонормированную систему. Доказательство. Имеем при . Нор...