24551

Мультипроцессорная обработка, архитектуры мультипроцессорных систем

Доклад

Информатика, кибернетика и программирование

В настоящее время обычным стало включение нескольких процессоров в архитектуру даже персонального компьютера. В мультипроцессорных системах несколько задач выполняются действительно одновременно так как имеется несколько обрабатывающих устройств – процессоров. Мультипроцессирование не исключает мультипрограммирования: на каждом из процессоров может попеременно выполняться некоторый закрепленный за данным процессором набор задач. Симметричная архитектура мультипроцессорной системы предполагает однородность всех процессоров и единообразие...

Русский

2013-08-09

16.56 KB

20 чел.

Вопрос 14. Мультипроцессорная обработка, архитектуры мультипроцессорных систем.

§4.1.4.Мультипроцессорная обработка.

Мультипроцессорная обработка – это способ организации вычислительного процесса в системах с несколькими процессорами, при котором несколько задач (процессов, потоков) могут одновременно выполняться на разных процессорах системы.

В настоящее время обычным стало включение нескольких процессоров в архитектуру даже персонального компьютера. Более того, многопроцессорность теперь является одним из необходимых требований, которые предъявляются к компьютерам, используемым в качестве центрального сервера более-менее крупной сети. Стало общепринятым введение в ОС функций поддержки мультипроцессорной обработки данных. Такие функции имеются во всех популярных ОС, таких как Sun Solaris 2.x, Santa Crus Operations Open Server 3.x, IBM OS/2, Microsoft Windows NT и Novell NetWare, начиная с 4.1.

Не следует путать мультипроцессорную обработку с мультипрограммной обработкой. В мультипрограммных системах параллельная работа разных устройств позволяет одновременно вести обработку нескольких программ, но при этом в процессоре в каждый момент времени выполняется только одна программа. То есть в этом случае несколько задач выполняются попеременно на одном процессоре, создавая лишь видимость параллельного выполнения. В мультипроцессорных системах несколько задач выполняются действительно одновременно, так как имеется несколько обрабатывающих устройств – процессоров. Мультипроцессирование не исключает мультипрограммирования: на каждом из процессоров может попеременно выполняться некоторый закрепленный за данным процессором набор задач.

Мультипроцессорные системы могут быть симметричными или несимметричными. При этом понятие симметричности или несимметричности может относиться к типу архитектуры или к способу организации вычислительного процесса.

Симметричная архитектура мультипроцессорной системы предполагает однородность всех процессоров и единообразие включения процессоров в общую схему мультипроцессорной системы. Традиционные симметричные мультипроцессорные конфигурации разделяют одну большую память между всеми процессорами.

Масштабируемость, или возможность наращивания числа процессоров, в симметричных системах ограничена вследствие того, что все они пользуются одной и той же оперативной памятью и, следовательно, должны располагаться в одном корпусе. Такая конструкция, называемая масштабируемой по вертикали, практически ограничивает число процессоров до четырех или восьми.

В симметричных архитектурах все процессы пользуются одной и той же схемой отображения памяти. Они могут очень быстро обмениваться данными, так что обеспечивается достаточно высокая производительность для тех приложений (например, при работе с базами данных), в которых несколько задач должны активно взаимодействовать между собой.

В асимметричной архитектуре разные процессоры могут отличаться как типом, так и выполняемыми функциями: одни процессоры проводят вычисления, другие управляют подсистемой ввода-вывода и т. д. Функциональная неоднородность в асимметричных архитектурах влечет за собой структурные отличия во фрагментах системы, содержащих разные процессоры. Эти отличия касаются схемы подключения процессоров к системной шине, набора периферийных устройств и способа взаимодействия процессоров с устройствами.

Масштабирование в асимметричной архитектуре реализуется иначе, чем в симметричной. Так как требование единого корпуса отсутствует, система может состоять из нескольких устройств, каждое из которых содержит один или несколько процессоров. Это масштабирование по горизонтали. Каждое такое устройство называется кластером, а вся мультипроцессорная система – кластерной.

Другим аспектом мультипроцессорных систем, который может характеризоваться симметрией или ее отсутствием, является способ организации вычислительного процесса. Последний, как известно, определяется и реализуется операционной системой.

Асимметричное мультипроцессирование является наиболее простым способом организации вычислительного процесса в системах с несколькими процессорами. Этот способ часто называют также «ведущий-ведомый».

Функционирование системы по принципу «ведущий-ведомый» предполагает выделение одного из процессоров в качестве «ведущего», на котором работает операционная система и который управляет всеми остальными «ведомыми» процессорами. То есть ведущий процессор берет на себя функции распределения задач и ресурсов, а ведомые процессоры работают только как обрабатывающие устройства и никаких действий по организации работы вычислительной системы не выполняют. На роль ведущего процессора может быть назначен наиболее надежный и производительный процессор.

Так как операционная система работает только на одном процессоре и функции управления полностью централизованы, то такая ОС оказывается не намного сложнее, чем у однопроцессорной системы.

Симметричное мультипроцессирование как способ организации вычислительного процесса может быть реализовано в системах только с симметричной мультипроцессорной архитектурой. Операционная система при этом полностью децентрализована и является общей для всех процессоров. При симметричной организации все процессоры равноправно участвуют и в управлении вычислительным процессом, и в выполнении прикладных задач. Например, сигнал прерывания от принтера, который распечатывает данные процесса, выполняемого на одном процессоре, может быть обработан другим процессором. Разные процессоры могут в какой-то момент одновременно обслуживать как разные, так и одинаковые модули общей операционной системы. Для этого программы операционной системы должны обладать свойством повторной входимости (реентерабельностью).

Модули ОС выполняются на любом доступном процессоре. Как только процессор завершает выполнение очередной задачи, он передает управление планировщику задач, который выбирает из общей для всех процессоров системной очереди задачу, которая будет выполняться на данном процессоре следующей. Все ресурсы выделяются для каждой выполняемой задачи по мере возникновения в них потребности и никак не закрепляются за процессором. В случае отказа одного из процессоров симметричные системы сравнительно просто реконфигурируются, что является их большим преимуществом перед плохо реконфигурируемыми асимметричными системами.

В симметричных архитектурах вычислительный процесс может быть организован как симметричным, так и асимметричным образом. Однако асимметричная архитектура непременно влечет за собой и асимметричный способ организации вычислений.


 

А также другие работы, которые могут Вас заинтересовать

33326. Типы структур сетей электросвязи, их преимущества и недостатки 26.36 KB
  Структура сетей электросвязи Понятие структуры сети раскрывает схему связей и взаимодействия ее элементов. При рассмотрении структуры сети выделяют следующие аспекты её описания: физический определяющий состав и связи элементов и логический отображающий взаимодействие элементов в процессе функционирования сети. Физическая структура сети это схема связей физических элементов сети: узлов коммутации УК оконечных пунктов ОП станций и линий передачи в их взаимном расположении с характеристиками передачи и распределения сообщений....
33327. Первичная сеть электросвязи 104.88 KB
  8 поясняется технологический принцип организации первичной сети. Сетевые станции являются оконечными устройствами первичной сети и предназначены для подключения потребителей к этой сети. Организационный принцип построения первичной сети ВСС РФ показан на Рис.Структура первичной сети Рис.
33328. Вторичные сети электросвязи. Назначение, структура, назначение элементов 29.22 KB
  Вторичные сети электросвязи Каналы первичной сети служат основой для построения вторичных сетей которые различаются по виду передаваемых сообщений служб и услуг. В состав вторичной сети входят: оконечные абонентские установки абонентские линии узлы коммутации данной вторичной сети каналы выделенные из первичной сети для образования данной вторичной сети В зависимости от видаов передаваемых сообщений и способов предоставления услуг связи различают следующие вторичные сети: телефонную телеграфную передачи данных факсимильную передачи...
33329. Службы электросвязи. Назначение, структура, назначение элементов 12.5 KB
  Служба электросвязи СлЭ представляет собой организационнотехническую структуру на базе сети связи или совокупности сетей электросвязи обеспечивающую обслуживание связью пользователей с целью удовлетворения их в определенном наборе услуг электросвязи. В зависимости от принадлежности сети связи подразделяются на: общего пользования – составная часть ЕСЭ РФ открытая для пользования всем физическим и юридическим лицам; ведомственные корпоративные – сети электросвязи министерств и иных федеральных органов исполнительной власти...
33330. Телематические службы. Назначение, структура, назначение элементов 18.63 KB
  Первая телематическая служба Телетекст появилась в начале 80х годов. Телефакс факсимильная служба общего пользования предназначенная для передачи сообщений между абонентскими факсимильными аппаратами. Факсимильная служба группы 1 осуществляет аналоговую передачу без сжатия данных и передачу факсимильных сообщений по ОАКТС. Факсимильная служба группы 2 имеет ограниченные возможности сжатия данных страница текста передается по ОАКТС за 3 мин.
33331. Структура взаимоувязанной сети связи РФ. Общедоступные и корпоративные сети связи 64.78 KB
  Общедоступные и корпоративные сети связи. Вместе с тем сети общего пользования Министерства связи не справлялись с требуемыми объемами передачи сообщений требуемых для нормального экономического развития страны и поэтому ряд министерств и ведомств стали создавать свои сети для удовлетворения собственных нужд. В 70х годах было принято решение о создании Единой автоматизированной сети связи ЕАСС Союза ССР.
33332. Способы коммутации и их классификация 19.81 KB
  Методы коммутации в сетях электросвязи Для доставки сообщений в сетях электросвязи могут быть установлены соединения двух видов: долговременные и оперативные. Известны два основных принципа оперативной коммутации: а непосредственное соединение; б соединение с накоплением информации. При непосредственном соединении осуществляется физическое соединение входящих в узел коммутации УК каналов с соответствующими адресу исходящими каналами.
33333. Коммутация каналов. Достоинства и недостатки. Области применения 25.59 KB
  Коммутация каналов обеспечивает предоставление каждой паре абонентов последовательности каналов сети для монопольного использования. В классической схеме в коммутации каналов BC участвуют функциональные блоки физического уровня 11B1C и физические процессы ФП узлов коммутации каналов либо узлов смешанной коммутации рис 3. Структура коммутации каналов В результате происходит сквозная коммутация и между взаимодействующими абонентскими системами либо административными системами KE образуется последовательность логических каналов...
33334. Коммутация сообщений и пакетов. Достоинства и недостатки. Области применения 29.06 KB
  Коммутация пакетов обеспечивает передачу пакетов из одного канала в другой подключенный к этому узлу.3 выполняется на базе одного и того же оборудования коммуникационной сети но позволяет обеспечить как коммуникацию каналов при N=1 так и коммуникацию пакетов при N=3. Первая оказывается дороже но строго гарантирует адресатам время доставки пакетов.