24718

Защита электродвигателей от перегрузок и замыканий на землю

Доклад

Энергетика

Защита с тепловым реле. Лучше других могут обеспечить характеристику приближающуюся к перегрузочной характеристике электродвигателя тепловые реле которые реагируют на количество тепла Q выделенного в сопротивлении его нагревательного элемента. Тепловые реле выполняются на принципе использования различия в коэффициенте линейного расширения различных металлов под влиянием нагревания. Основой такого теплового реле является биметаллическая пластина 1 рис.

Русский

2013-08-09

146.5 KB

12 чел.

17.  Защита электродвигателей от перегрузок и замыканий на землю.

Перегрузка электродвигателей возникает при затянувшемся пуске и самозапуске; из-за перегрузки приводимых механизмов. Для электродвигателя опасны только устойчивые перегрузки. Сверхтоки, обусловленные пуском или самозапуском электродвигателя, кратковременны и самоликвидируются при достижении нормальной частоты вращения.

Значительное увеличение тока электродвигателя получается также при обрыве фазы, что встречается, например, у электродвигателей, защищаемых предохранителями, при перегорании одного из них. При номинальной загрузке в зависимости от параметров электродвигателя увеличение тока статора при обрыве фазы будет составлять примерно (1,6 - 2,5)JHOM. Эта перегрузка носит устойчивый характер. Также устойчивый характер носят сверхтоки, обусловленные механическими повреждениями электродвигателя или вращаемого им механизма и перегрузкой механизма. Основной опасностью сверхтоков является сопровождающее их повышение температуры отдельных частей, и в первую очередь обмоток. Повышение температуры ускоряет износ изоляции обмоток и снижает срок службы двигателя. Перегрузочная способность электродвигателя определяется характеристикой зависимости между сверхтоком и допускаемым временем его прохождения:

где t - допустимая длительность перегрузки, с; Т - постоянная времени нагрева, с; а - коэффициент, зависящий от типа изоляции электродвигателя, а также периодичности и характера сверхтоков (для асинхронных электродвигателей в среднем а = 1,3); к - кратность сверхтока, т. е. отношение тока электродвигателя   Iд к IH0M,

Вид перегрузочной характеристики при постоянной времени нагрева Т = 300 с представлен на рис. 19.8. При решении вопроса об установке РЗ от перегрузки и характере ее действия руководствуются условиями работы электродвигателя, имея в виду возможность устойчивой перегрузки его приводного механизма:

а) на электродвигателях механизмов, не подверженных технологическим перегрузкам (например, электродвигателях циркуляционных, питательных насосов и т. п.) и не имеющих тяжелых условий пуска или самозапуска, РЗ от перегрузки не устанавливается;

б) на электродвигателях, подверженных технологическим перегрузкам  (например,  электродвигателях  мельниц,  дробилок, багерных насосов и т. п.), а также на электродвигателях,самозапуск которых не обеспечивается, РЗ от перегрузки должна устанавливаться;

в) защита от перегрузки выполняется с действием на отключение в случае, если не обеспечивается самозапуск электродвигателей или с механизма не может быть снята технологическая перегрузка без останова электродвигателя;

г) защита от перегрузки электродвигателя выполняется с действием на разгрузку механизма или сигнал, если технологическая перегрузка может быть снята с механизма автоматически или вручную персоналом без останова механизма и электродвигатели находятся под наблюдением персонала;

    д) на электродвигателях механизмов, могущих иметь как перегрузку, устраняемую при работе механизма, так и перегрузку, устранение которой невозможно без останова механизма, целесообразно предусматривать действие РЗ от сверхтоков с меньшей выдержкой времени на отключение электродвигателя. В тех случаях, когда ответственные электродвигатели собственных нужд электростанций находятся под постоянным наблюдением дежурного персонала, тогда РЗ их от перегрузки можно выполнить с действием на сигнал.

Защита с тепловым реле. Лучше других могут обеспечить характеристику, приближающуюся к перегрузочной характеристике электродвигателя, тепловые реле, которые реагируют на количество тепла Q, выделенного в сопротивлении его нагревательного элемента. Тепловые реле выполняются на принципе использования различия в коэффициенте линейного расширения различных металлов под влиянием нагревания. Основой такого теплового реле является биметаллическая пластина 1 (рис. 19.9), состоящая из спаянных по всей поверхности Металлов а и б с сильно различающимися коэффициентами линейного расширения. При нагревании пластина 1 прогибается в сторону металла с меньшим коэффициентом расширения и освобождает защелку рычага 2, который, поворачиваясь, под действием пружины 3 вокруг оси 5, замыкает контакты реле 4.

Нагревание пластины 1 осуществляется нагревательным элементом 6 при прохождении по нему тока I.

Тепловые реле сложны в обслуживании и наладке, имеют различные характеристики отдельных экземпляров реле, часто не соответствуют тепловым характеристикам электродвигателей и имеют зависимость от температуры окружающей среды, что приводит к нарушению соответствия тепловых характеристик реле и электродвигателя. Поэтому тепловые реле следует применять лишь в тех случаях, когда более простые токовые реле не обеспечивают защиты двигателей.

Защита от перегрузки с токовыми реле. Для защиты электродвигателей от перегрузки обычно применяются МТЗ с использованием реле с ограниченно зависимыми характеристиками типа РТ-80 или МТЗ с независимыми токовыми реле и реле времени (рис. 19.10).

Преимуществами МТЗ по сравнению с тепловыми являются более простая эксплуатация их и более легкий подбор и регулировка характеристик РЗ. Однако МТЗ не позволяют использовать перегрузочные возможности электродвигателей из-за недостаточного времени действия их при малых кратностях тока.

В случае выполнения РЗ от междуфазных КЗ при помощи токовых реле типа РТ-80 эти же реле используются и для защиты от перегрузки. Если при этом РЗ от сверхтоков должна действовать не на отключение, а на сигнал, то применяются реле типа РТ-84, имеющие раздельные контакты отсечки и индукционного элемента (рис. 19.10, в, г).

Ток срабатывания МТЗ от перегрузки устанавливается из условия отстройки от IНОМ электродвигателя:

В соответствии с ПУЭ РЗ от замыканий на землю в обмотке статора с действием на отключение устанавливается на электродвигателях мощностью 2000 кВт и более при токах замыкания на землю более 5 А, а на электродвигателях меньшей мощности - при токах замыкания на землю более 10 А. В эксплуатации, однако, при токах замыкания на землю более 5 А РЗ от замыканий на землю часто устанавливают на электродвигателях любой мощности, что способствует ограничению их повреждений при замыканиях на землю.

Защита от замыканий на землю реагирует на емкостный ток сети и выполняется с помощью одного токового реле типа РТЗ-51, которое подключается к ТТ нулевой последовательности (ТТНП), установленному на кабеле, питающем двигатель. Применяются ТТНП типов ТЗ, ТЗЛ, ТЗЛМ и др. (рис. 19.11, а).

Ток срабатывания РЗ выбирается на основании тех же соображений, что и для аналогичной РЗ кабельных линий, реагирующих на емкостный ток (50 Гц) :

 

где IС - собственный емкостный ток электродвигателя; kотс -коэффициент отстройки, принимаемый равным 1,2-1,3; kб -коэффициент, учитывающий бросок емкостного тока электродвигателя при внешних перемежающихся замыканиях на землю. Для РЗ, действующей без выдержки времени, значение этого коэффициента принимается равным 3-4. Для повышения чувствительности РЗ допускается принимать уменьшенное значение кб = 1,5 + 2. Защита при этом выполняется с выдержкой времени 1-2 с.


 

А также другие работы, которые могут Вас заинтересовать

24437. Теория дислокаций 231 KB
  Дефектами кристалла называют всякое нарушение трансляционной симметрии кристалла — идеальной периодичности кристаллической решётки. Различают несколько видов дефектов по размерности. А именно, бывают нульмерные (точечные), одномерные (линейные), двумерные (плоские) и трёхмерные (объемные) дефекты.
24438. Основные функции компиляторов 209 KB
  Система прерывания ОМЭВМ. Непосредственной причиной такого переключения процессора с одной программы на другую является сигнал прерывания причем характер новой программы которую процессор начинает выполнять в результате воздействия сигнала прерывания и которая называется программой обработки прерывания зависит от источника возникновения этого сигнала. В большинстве случаев возникновение сигналов прерывания не планируется в выполняемой текущей программе а является по отношению к ней независимым или внешним событием. В зависимости от...
24439. Отладчики программ 43.5 KB
  Turbo Debugger представляет собой набор инструментальных средств, позволяющий отлаживать программы на уровне исходного текста и предназначенный для программистов, использующих семейство компиляторов Borland.
24440. Методы оптимизации и «раскрутки» web-сайтов 26 KB
  Поисковая оптимизация 4. Оптимизация числа ключевых слов на странице Ключевые слова фразы должны встречаться в тексте как минимум34раза. Оптимизация плотности ключевых слов Плотность ключевого слова на странице показывает относительную частоту содержания слова в тексте. 4 Оптимизация расположения ключевых слов на странице Чем ближе ключевое слово или фраза к началу документа тем больший вес они получают в глазах поисковой системы.
24441. Преобразование Фурье и его основные свойства 157.5 KB
  Большинство ОМЭВМ представляет собой Гарвардскую архитектуру хранение программных кодов и данных происходит в раздельных областях памяти. Объем ОЗУ памяти даны меньше объема ПЗУ память программ. При выполнении прмы процессор осуществляет выбоку из памяти команд данных и запись результатов при этом он адресуется к ячейкам памяти по их номерам. Ячейки памяти имеют свой номер адрес памяти а совокупность адресов памяти состовляют адресное пространство.
24442. Преобразование Лапласа, Представление дискретной информации и способы ее отображения 93.5 KB
  Система команд однокристальной ЭВМ и способы адресации операндов Команда процессора код определяющий действие устройства при выполнении заданных операций фций. Способ адресации способ указания положения данных над которыми производятся операция адресация операндов либо способ определения точки перехода в командах передачи управления адресация переходов. При формировании команды один и тот же код операции может использоваться при различных способах адресации Пример на системе команд MCS51. Элементы в квадратных скобках могут...
24443. Параллельный и последовательный порты ЭВМ. Теорема Котельникова 279 KB
  Последовательный порт может работать в 4х режимах: В режиме 0 информация передается и принимается через ввод приемника RxD. В режиме 1 информация передается через выход передатчика TxD и принимается через вход приемника RxD В режиме 2 информация передается через выход передатTxD принимается через вход приемника RxD. Частота приема и передачи в режиме 2 задается программно и может быть равна fBQ 32 или fno 64. Режим 3 полностью идентичен режиму 2 за исключением параметров частоты приема и передачи которые в режиме 3 задаются Т С 1.
24444. Энтропия источника информации 179 KB
  Энтропия источника информации. Источник информации можно представить в виде случайной величины X принимающей одно из конечного числа возможных значений {1 2 ј m} с вероятностью pi pi вероятность того что X = i.Теорема Шеннона Если имеется источник информации с энтропией Нх и канал связи с пропускной способностью С то если С HX то всегда можно закодировать достаточно длинное сообщение таким образом что оно будет передано без задержек. Если же напротив С HX то передача информации без задержек невозможна.
24445. Технология сжатия информационных данных (Алгоритмы Шеннона-Фано, Хаффмана) 182 KB
  Выполнив выше сказанное для всех символов получим: C = 00 2 бита A = 0100 4 бита D = 0101 4 бита F = 011 3 бита B = 10 2 бита E = 11 2 бита Каждый символ изначально представлялся 8ю битами один байт и так как мы уменьшили число битов необходимых для представления каждого символа мы следовательно уменьшили размер выходного файла. Из этих комбинаций лишь 2 по длиннее равны 8 битам. Поэтому для дискретного управления в реальном масштабе времени наличие в системе команд операций...