24747

Функции маршрутизатора в сети

Доклад

Информатика, кибернетика и программирование

Функции маршрутизатора в сети Маршрутиза́тор сетевое устройство пересылающее пакеты данных между различными сегментами сети и принимающее решения на основании информации о топологии сети и определённых правил заданных администратором. Нередко маршрутизатор используется для обеспечения доступа из локальной сети в глобальную сеть Интернет осуществляя функции трансляции адресов и межсетевого экрана.

Русский

2013-08-09

26.5 KB

4 чел.

29.  Функции маршрутизатора в сети

Маршрутиза́тор  сетевое устройство, пересылающее пакеты данных между различными сегментами сети и принимающее решения на основании информации о топологии сети и определённых правил, заданных администратором.

Маршрутизатор работает на более высоком «сетевом» уровне 3 сетевой модели OSI, нежели коммутатор и сетевой мост.

Нередко маршрутизатор используется для обеспечения доступа из локальной сети в глобальную сеть Интернет, осуществляя функции трансляции адресов и межсетевого экрана.


 

А также другие работы, которые могут Вас заинтересовать

22539. Прочность и перемещения при центральном растяжении или сжатии 136 KB
  Напомним что под растяжением сжатием понимают такой вид деформации стержня при котором в его поперечном сечении возникает лишь один внутренний силовой фактор продольная сила Nz. Поскольку продольная сила численно равна сумме проекций приложенных к одной из отсеченных частей внешних сил на ось стержня для прямолинейного стержня она совпадает в каждом сечении с осью Oz то растяжение сжатие имеет место если все внешние силы действующие по одну сторону от данного поперечного сечения сводятся к равнодействующей направленной вдоль...
22540. Расчет статически неопределимых систем по допускаемым нагрузкам 116.5 KB
  Расчет статически неопределимых систем по допускаемым нагрузкам. Применение к статически определимым системам. Расчетная схема статически определимой стержневой системы Рассчитывая эту систему обычным путем найдем усилия N1 = N2 no формуле: из равновесия узла А. Это всегда имеет место для статически определимых конструкций при равномерном распределении напряжений когда материал по всему сечению используется полностью.
22541. Учет собственного веса при растяжении и сжатии 102 KB
  Длина стержня l площадь поперечного сечения F удельный вес материала и модуль упругости Е. Подсчитаем напряжения по сечению АВ расположенному на расстоянии от свободного конца стержня. Эти напряжения будут нормальными равномерно распределенными по сечению и направленными наружу от рассматриваемой части стержня т. Наиболее напряженным опасным будет верхнее сечение для которого достигает наибольшего значения l; напряжение в нем равно: Условие прочности должно быть выполнено именно для этого сечения: Отсюда необходимая площадь стержня...
22542. Расчет гибких нитей 148.5 KB
  Это так называемые гибкие нити. Обычно провисание нити невелико по сравнению с ее пролетом и длина кривой АОВ мало отличается не более чем на 10 от длины хорды АВ. В этом случае с достаточной степенью точности можно считать что вес нити равно мерно распределен не по ее длине а по длине ее проекции на горизонтальную ось т. Расчетная схема гибкой нити.
22543. Моменты инерции относительно параллельных осей 119.5 KB
  Моменты инерции относительно параллельных осей. Задачу получить наиболее простые формулы для вычисления момента инерции любой фигуры относительно любой оси будем решать в несколько приемов. Если взять серию осей параллельных друг другу то оказывается что можно легко вычислить моменты инерции фигуры относительно любой из этих осей зная ее момент инерции относительно оси проходящей через центр тяжести фигуры параллельно выбранным осям. Расчетная модель определения моментов инерции для параллельных осей.
22544. Главные оси инерции и главные моменты инерции 157 KB
  Главные оси инерции и главные моменты инерции. Как уже известно зная для данной фигуры центральные моменты инерции и можно вычислить момент инерции и относительно любой другой оси. Именно можно найти систему координатных осей для которых центробежный момент инерции равен. В самом деле моменты инерции и всегда положительны как суммы положительных слагаемых центробежный же момент может быть и положительным и отрицательным так как слагаемые zydF могут быть разного знака в зависимости от знаков z и у для той или иной площадки.
22545. Прямой чистый изгиб стержня 99.5 KB
  Прямой чистый изгиб стержня При прямом чистом изгибе в поперечном сечении стержня возникает только один силовой фактор изгибающий момент Мх рис. Так как Qy=dMx dz=0 то Mx=const и чистый прямой изгиб может быть реализован при загружении стержня парами сил приложенными в торцевых сечениях стержня. Сформулируем предпосылки теории чистого прямого изгиба призматического стержня. Для этого проанализируем деформации модели стержня из низкомодульного материала на боковой поверхности которого нанесена сетка продольных и поперечных рисок...
22546. Прямой поперечный изгиб стержня 122 KB
  Прямой поперечный изгиб стержня При прямом поперечном изгибе в сечениях стержня возникает изгибающий момент Мх и поперечная сила Qy рис. 1 которые связаны с нормальными и касательными напряжениями Рис. Связь усилий и напряжений а сосредоточенная сила б распределеннаяРис. Однако для балок с высотой сечения h l 4 рис.
22547. Составные балки и перемещения при изгибе 77.5 KB
  Составные балки и перемещения при изгибе ПОНЯТИЕ О СОСТАВНЫХ БАЛКАХ Работу составных балок проиллюстрируем на простом примере трехслойной балки прямоугольного поперечного сечения. Это означает что моменты инерции и моменты сопротивления трех независимо друг от друга деформирующихся балок должны быть просуммированы Если скрепить балки сваркой болтами или другим способом рис. 1 б то с точностью до пренебрежения податливостью наложенных связей сечение балки будет работать как монолитное с моментом инерции и моментом сопротивления...