2486

Определение скорости пули при помощи баллистического маятника

Лабораторная работа

Физика

Цель работы. Определить скорость пули и потери механической энергии при неупругом взаимодействии пули и ловушки, используя закон сохранения момента импульса, закон сохранения и превращения энергии.

Русский

2013-01-06

235.68 KB

139 чел.

                                           Лабораторная работа № 130

Определение скорости пули при помощи баллистического маятника

Цель работы. Определить скорость пули и потери механической энергии при неупругом взаимодействии «пули» и «ловушки», используя закон сохранения момента импульса, закон сохранения и превращения энергии.

Приборы и принадлежности: 1. Установка лабораторная.

                                                     2. Набор пуль.

1. Теоретическое введение.

        В данной работе для определения скорости полета пули используется баллистический маятник. Баллистический маятник (Рис. 1) представляет собой физический маятник, состоящий из «ловушки» массой , закрепленной на нижнем конце стержня массой . Верхний конец стержня насажен на вал, закрепленный в подшипнике, так что вся система может свободно вращаться вокруг горизонтальной оси Z , проходящей через центр вала. После выстрела из пружинного пистолета пуля массой попадает в неподвижную ловушку и остается в ней. В результате абсолютно неупругого удара пули об ловушку маятник отклоняется от положения равновесия. Законы сохранения момента импульса и энергии позволяют найти скорость пули по величине угла отклонения маятника от положения равновесия. На рис. 1 изображена система "пуля - маятник" в трех важных состояниях:

Состояние 1 - пуля вылетела из пистолета, но еще не долетела до ловушки. Ловушка неподвижна.

Состояние 2 - пуля попала в ловушку, которая  вместе с пулей начала отклоняться от положения равновесия. 

Состояние 3 - маятник отклонился на максимальный угол , и ловушка с пулей сместилась вдоль измерительной шкалы на расстояние S, которое измеряем в работе. При этом центр инерции ловушки с пулей поднимается на высоту Н относительно положения равновесия.

Рис. 1

Условно движение системы тел маятника можно представить двумя процессами.

В процессе 1 движущаяся пуля взаимодействует с ловушкой, и система переходит из состояния 1 в состояние 2. В этом процессе механическая энергия не сохраняется из-за ее частичного преобразования во внутреннюю энергию. При этом, однако, сохраняется момент импульса системы относительно оси вращения Z:

                                                                        ,                                                         (1)

где LZ1 – проекция момент импульса системы на ось  Z  до взаимодействия:   

                                     ,                    (2)

LZ2 - проекция момент импульса системы на ось Z  после взаимодействия:

                                         (3)

В соотношении (3) -полный момент инерции системы относительно оси Z, , , - соответственно моменты инерции пули, ловушки и стержня маятника относительно оси Z. 

После абсолютно неупругого захвата пули в ловушку маятник начинает вращаться вокруг оси  Z  с  угловой скоростью . Из выражений (2) и (3) следует, что начальная угловая скорость системы определяется соотношением

                                                                                  (4)

Полная механическая энергия системы (равная энергии пружины или кинетической энергии пули) в процессе 1 не сохраняется, так как при движении пули в ловушке происходят многократные  неупругие соударения пули со стенкой. В результате большая часть механической энергии системы теряется на совершение работы неконсервативных сил, возникающих при деформациях пули и стенок ловушки. Величина потери энергии равна работе неконсервативных сил и равна разности первоначальной энергии системы и начальной энергии вращения маятника

                            (5)

В процессе 2 (переход из второго состояния в третье) работу совершает лишь консервативная сила тяжести, поэтому к процессу 2 можно применить закон сохранения полной механической энергии:

,      (6)

где     

                                                                                 (7)

- кинетическая энергия вращательного движения системы в состоянии 2,

              (8)

- потенциальная энергия системы в состоянии 3.

Из Рис. 1 следует, что изменение высоты центра масс С ловушки с пулей при переходе из состояния 2 в состояние 3 равно:

                     .    (9)

    При этом изменение высоты центра масс стержня в 2 раза меньше:

    .                            (10)

Здесь - перемещение центра ловушки из равновесного положения в  его положение при максимальном  отклонении, определяемое по шкале линейки 7.

Из соотношений (6)-(10) найдем скорость пули

                         (11)

2. Описание схемы установки.

Схема лабораторной установки представлена на Рис.2. На платформе 10 размещены пружинный пистолет 1, стойка 5 на которой закреплён вал с подшипником 4. На вал подшипника насажен верхний конец стержня 3 маятника, на нижнем конце которого закреплена ловушка 2.

Рис. 2

Стержень ствола пистолета 1 находится на одном уровне с входным отверстием ловушки 2.  Расстояние s, пройденное ловушкой, измеряется с помощью металлической линейки 7, которая фиксирует подвесную пластинку 6  ловушки 2 с помощью зубчатой поверхности линейки. Для сжатия пружины 8 необходимо пулю - полый металлический цилиндр надеть на стержень ствола пистолета, сжать пружину пулей, закрепив ее специальным фиксатором 9. Выстрел производится нажатием на фиксатор 9 вниз, в результате чего пуля влетит в ловушку. Маятник с пулей отклонится на угол и останется в этом положении за счёт подвесной планки 6, зафиксированной зубцами линейки 7.

                          3. Выполнение работы.  

Из таблицы (на платформе 10) занести в протокол расстояние от оси вращения до центра инерции ловушки l, массы пуль и , а также массы ловушки и стержня маятника

1. Привести установку в исходное положение, для чего: установить стержень маятника так, чтобы он висел параллельно стойки 5; определить соответствующее положение планки 6 по  шкале линейки 7. Ловушку отцентрировать так, чтобы ось стержня ствола проходила через центр отверстия ловушки (т.е. так, чтобы пуля после выстрела попала в ловушку). Пули должны находиться на платформе 10. Значение занести в табл. 1.

2. Надеть пулю массой  на стержень ствола  пистолета и сжать пружину пулей влево и закрепить её фиксатором 9 за третий виток пружины от ее конца. При последующих повторных измерениях производить фиксацию пружины за тот же виток.

3. Нажать на фиксатор пружины вниз и произвести выстрел из пистолета по маятнику. Пуля влетит в ловушку и отклонит маятник от исходного положения. Планка 6 зафиксирует крайнее положение   отклоненного маятника по шкале линейки 7. Найти  разницу между начальным и конечным положением планки 6 по шкале линейки 7: . Результаты занести в таблицу 1.

4. Вынуть пулю из ловушки, отклонив маятник вправо. Возвратить систему в исходное положение.

5. Опыт повторить два раза по пп. . Результаты занести в таблицу 1.

6. Заменить пулю массой на пулю массой и провести три раза выполнение пунктов . Результаты измерений занести в табл. 1.

4. Обработка результатов наблюдений.

1. Для каждого значения перемещения, найденного  в двух сериях опытов с разными значениями массы пули и  , рассчитать по формуле (11) значения скорости пули до удара и по формуле (5) работы А неконсервативных сил при ударе пули и ловушки. Результаты занести в таблицу 1.

2.  Для каждой  массы пули рассчитать средние значения скорости пули  и работы . Результаты занести в таблицу 1.

3. Вычислить относительные погрешности измерений и A как для косвенных измерений, приравняв их приближенно относительной погрешности определения длины перемещения . (для нахождения случайной ошибки   определить стандартной процедурой среднеквадратичную ошибку и умножить ее на соответствующий числу измерений коэффициент Стьюдента). Результаты занести в таблицу 1.

4. Записать окончательные результаты для двух значений массы пули в виде:

                   

                  

5. Сравнить результаты определения скорости и работы для двух значений массы пули и проанализировать их на основе формул (5), (11).

Данные измерений и вычислений занести в табл. 1

                                                                                                                   Таблица 1

№ п/п

, кг

, м

м

м

, м

, м

, м/c

, м/c

,

Дж

,

Дж

=

=

КОНТРОЛЬНЫЕ ВОПРОСЫ

  1.  Вывести расчетные формулы для и А.
  2.  Как определить относительную погрешность измерений
  3.  Почему при расчете относительной погрешности учитывалась только ошибка измерения длины перемещения?
  4.  Поясните преобразование одного вида энергии в другой после выстрела.
  5.  Какие силы называются неконсервативным и что они вызывают?
  6.  Почему при захвате пули в ловушку не сохраняется механическая энергия системы, но сохраняется ее момент импульса?
  7.  При каком ударе (упругом или неупругом) маятник отклонится на больший угол и почему?
  8.  Почему при проведении повторных наблюдений натяжение пружины устанавливается всегда одинаковым?

 

А также другие работы, которые могут Вас заинтересовать

33347. Общие принципы формирования многоканальных линий связи (МКЛС) 20.02 KB
  Для унификации многоканальных систем связи за основной или стандартный канал принимают канал тональной частоты канал ТЧ обеспечивающий передачу сообщений с эффективно передаваемой полосой частот 300.11 приведена структурная схема наиболее распространенных систем многоканальной связи. Структурная схема систем многоканальной связи Реализация сообщений каждого источника а1t а2t.
33348. Принципы формирования МКЛС с частотным разделением сигналов (ЧРК) 33.83 KB
  Частотное разделение сигналов Функциональная схема простейшей системы многоканальной связи с разделением каналов по частоте представлена на Рис. ФN спектры gK канальных сигналов занимают соответственно полосы частот 1 2 . Проследим основные этапы образования сигналов а также изменение этих сигналов в процессе передачи Рис.
33349. Принципы формирования МКЛС с временным разделением каналов (ВРК) 25.94 KB
  Временное разделение каналов Принцип временного разделения каналов ВРК состоит в том что групповой тракт предоставляется поочередно для передачи сигналов каждого канала многоканальной системы Рис. Принцип временного разделения каналов В зарубежных источниках для обозначения принципа временного разделения каналов используется термин Time Division Multiply ccess TDM. Для этого один из каналов занимают под передачу специальных импульсов синхронизации.
33350. Особенности построения цифровых многоканальных систем передачи. Плезиохронная цифровая иерархия (ПЦИ). Cинхронная цифровая иерархия 72.37 KB
  Особенности построения цифровых систем передачи Основной тенденцией развития телекоммуникаций во всем мире является цифровизация сетей связи предусматривающая построение сети на базе цифровых методов передачи и коммутации. Это объясняется следующими существенными преимуществами цифровых методов передачи перед аналоговыми. Представление информации в цифровой форме позволяет осуществлять регенерацию восстановление этих символов при передаче их по линии связи что резко снижает влияние помех и искажений на качество передачи информации.
33351. Виды и тенденции развития направляющих систем электросвязи (НСЭ) 90.94 KB
  Тенденции развития направляющих систем электросвязи НСЭ Построение сети базируется на направляющих средах передачи рис. В направляющие среды передачи входят вся номенклатура действующих металлических кабелей связи волоконнооптические кабели воздушные линии волноводы линии поверхностной волны высоковольтные линии электропередачи электрофицированные железные дороги радиорелейные линии и спутниковые линии. Направляющими системами передачи НСП имеющими первостепенное значение при построении сетей электросвязи являются электрические...
33352. Металлические кабели и их основные параметры 42.52 KB
  проводников К линиям связи предъявляются следующие основные требования: осуществление связи на практически требуемые расстояния; пригодность для передачи различных видов сообщений как по номенклатуре так и по пропускной способности; защищенность цепей от взаимных влияний и внешних помех а также от физических воздействий атмосферных явлений коррозии и пр. В простейшем случае проводная ЛС физическая цепь образуемая парой металлических проводников. По конструкции и взаимному расположению проводников различают симметричные СК и...
33353. Волоконно-оптические кабели и их основные параметры 13.74 KB
  Многомодовое волокно со ступенчатым изменением показателя преломления диаметр сердечника 40 100 мкм. Многомодово волокно с плавным изменение показателя преломления диаметр сердечника 40 100 мкм. Одномодовое волокно диаметр сердечника 5 15 мкм. В одномодовом кабеле используется центральный проводник очень малого диаметра соизмеримый с длинной волной света от 5 до 10 мкм.
33354. Общие сведения о радиолиниях связи. Основные понятия и определения. Классификация диапазонов радиочастот и радиоволн. Особенности распространения радиоволн метрового и миллиметрового диапазонов 18.21 KB
  Классификация диапазонов радиочастот и радиоволн. Особенности распространения радиоволн метрового и миллиметрового диапазонов. Классификация диапазонов радиочастот и радиоволн. Радиосвязь вид электросвязи осуществляемый с помощью радиоволн.
33355. Обеспечение дальности связи. Радиорелейные, тропосферные и спутниковые линии (системы) передачи (связи). Магистральные кабельные линии (системы) передачи 64.86 KB
  Радиорелейные тропосферные и спутниковые линии системы передачи связи. Магистральные кабельные линии системы передачи. Радиолинии передачи 6. Радиорелейные линии передачи Радиолиния передачи в которой сигналы электросвязи передаются с помощью наземных ретрансляционных станций называется радиорелейной линией передачи.