2487

Изучение физического маятника. Лабораторная работа

Лабораторная работа

Физика

Выполнив лабораторную работу, научились определять ускорение свободного падения методом Бесселя.

Русский

2013-01-14

74.77 KB

57 чел.

Отчет по лабораторной работе

Изучение физического маятника

Выполнили:

студенты группы Ф–14

Кукобникова В.В.,

Лобан А.А.


Цель работы: определение ускорения свободного падения методом Бесселя.

Приборы и принадлежности: установка FPM-04, линейка.

Теоретическое обоснование

Формула (1)

для периода колебаний ФМ может служить основой для определения ускорения силы тяжести. Однако сложности, связанные с определением момента инерции I маятника, затрудняют непосредственное использование этой формулы для определения g. Для устранения этой трудности, Бесселем была предложена специальная конструкция ФМ, получившая название оборотный маятник (ОМ). Он состоит из металлического стержня, на котором закреплены две опорные призмы и два ролика. Если расстояние между призмами равно , то согласно условию взаимности точек подвеса О и центра качания , периоды колебаний и колебаний ОМ на первой и второй призмах должны совпадать. На практике, для достижения этого условия, фиксируют положение опорных призм одного из роликов, а второй ролик передвигают по стержню, добиваясь совпадения периодов.

Пусть и - расстояния центра масс ОМ относительно первой и второй осей вращения, совпадающих с гранями опорных призм, а - момент инерции маятника относительно оси, совпадающей с центром масс. По теореме Штейнера, для моментов инерции маятника относительно первой и второй оси качания, запишем:

и (2)

где m- масса ОМ.

Из (2) нетрудно получить:

 (3)

Учитывая, что согласно :

и

вместо (3) запишем:

 (4)

Приведённая длина ФМ связана с его периодом соотношением . Следовательно (4) можно переписать в виде:

откуда следует рабочая:

(5)

где - расстояние между опорными призмами.

Упражнение 3

1) Зафиксировали ролики на стержне несимметрично, так чтобы один из них находился вблизи конца стержня, а другой вблизи его середины. Одну из опорных призм поместили вблизи свободного конца стержня, а вторую - посередине расстояния между роликами.

2) Измерили время 10 колебаний на призме, и определили их период .

3) При том же соотношении призм и роликов определил период колебаний на другой призме.

4) Последовательно перемещая ролик на расстояние мм. в выбранном направлении измерили периоды колебаний и на первой и второй опорах. Результаты измерений и вычислений занесли в таблицу 1.

Таблица 1

t1,с

t2,с

T1

T2

x, см

1

10,321

11,691

1,032

1,169

38

2

10,323

11,702

1,032

1,170

3

10,318

11,693

1,031

1,169

4

10,324

11,715

1,032

1,171

5

10,323

11,703

1,032

1,175

ср.зн.

10,325

11,702

1,032

1,177

t1,с

t2,с

T1

T2

x, см

1

10,224

10,742

1,022

1,074

37

2

10,222

10,739

1,022

1,073

3

10,223

10,742

1,023

1,074

4

10,226

10,741

1,023

1,074

5

10,225

10,738

1,022

1,073

ср.зн.

10,222

10,740

1,022

1,074

t1,с

t2,с

T1

T2

x, см

1

10,114

10,091

1,011

1,009

36

2

10,112

10,081

1,011

1,008

3

10,116

10,101

1,012

1,010

4

10,113

10,095

1,011

1,009

5

10,112

10,085

1,011

1,009

ср.зн.

10,112

10,090

1,011

1,009

График зависимости T1(x) и T2(x).

 Т

  T2

 T1

0          x

5) По данным таблицы определили значение =0,5м.

6) Поместив ролик в положение , измерили время 20 полных колебаний на опорных призмах. Вычислили периоды. Результаты измерений и вычислений занесли в таблицу 2.

Таблица 2

t1

Δti

Δti2

SΔti2

Δtсл

Δtпр

tср±Δt

1

21,357

-0,037

0,00135

0,10607

0,296992

0,001

21,394±0,297

2

21,782

0,387

0,14915

3

21,236

-0,158

0,02491

4

21,173

-0,220

0,04875

5

21,423

0,029

0,00085

ср.зн.

21,394

0,22501

2,8

Δt=0,2969

t2

Δti

Δti2

SΔti2

Δtсл

Δtпр

Tср±Δt

1

21,305

-0,007

0,000049

0,00723

0,020249

0,001

21,312±0,0203

2

21,302

-0,011

0,000101

3

21,338

0,026

0,000676

4

21,317

0,005

0,000025

5

21,298

-0,014

0,000196

ср.зн.

21,312

0,001046

2,8

Δt=0,0203

T1

ΔTi

ΔTi2

SΔTi2

ΔTсл

ΔTпр

Tср±ΔT

1

1,068

-0,00184

0,000003

0,00531

0,014849

0,001

1,0697±0,0149

2

1,089

0,01931

0,000373

3

1,062

-0,00789

0,000062

4

1,059

-0,01104

0,000122

5

1,071

0,00146

0,000002

ср.зн

1,0697

0,000563

2,8

ΔT=0,0149

T2

ΔTi

ΔTi2

SΔTi2

ΔTсл

ΔTпр

Tср±ΔT

1

1,065

-0,0003

0,00000012

0,00036

0,001012

0,001

1,0656±0,0014

2

1,065

-0,0005

0,00000025

3

1,067

0,0013

0,00000169

4

1,065

0,0002

0,00000006

5

1,064

-0,0007

0,00000049

ср.зн

1,0656

0,00000262

2,8

ΔT=0,0014

7) Измерили , которое равно расстоянию между призмами =0,33 м.

8) Для определения и (подвижной ролик имеет координату ), сняли маятник и поместили на острую грань, специальной подставки, добившись его равновесия. Расстояния от опорных призм и до грани дадут значения =0,2 м и =0,4 м.

  1.  Пользуясь измеренными величинами по формуле (5) определили g:

g===10,95

Вывод: выполнив лабораторную работу, научились определять ускорение свободного падения методом Бесселя.


 

А также другие работы, которые могут Вас заинтересовать

77735. Интерфейс НГМД 2.29 MB
  Интерфейс НГМД Интерфейс накопителей на гибких магнитных дисках НГМД является сугубо специфическим по нему передаются не байты команд и данных а сигналы управления приводом и не декодированные сырые битовые потоки данных чтения-записи. Основные функции по управлению НГМД а также по кодированию-декодированию данных выполняет контроллер расположенный на системной плате1. Все функции необходимые для использования НГМД в качестве устройств хранения данных реализованы сервисами BIOS INT 13h и ОС. Контроллер 2 FDC АТ поддерживает два...
77736. Интерфейс ATA 205 KB
  После введения в 2003 году стандарта Seril T Последовательный T традиционный T стали именовать Prllel T имея в виду способ передачи данных по 40 жильному кабелю. Это вдвое увеличивает скорость передачи данных по интерфейсу. Также введена проверка на четность CRC что повышает надёжность передачи информации. 1й регистр с адресом 0 является 16 разрядный и используется для передачи данных между диском и контроллером.
77737. Подключение жестких дисков ATA к компьютеру 112 KB
  Неправильное подключение разъемов кабеля к жесткому диску или системной плате не ведет с необходимостью к повреждению электроники диска или платы жесткий диск просто не распознается и не инициализируется BIOS. Включить компьютер и войти в SetupBIOS программу настройки BIOS бапзовой системы вводавывода нажав комбинацию клавиш высвечиваемую на экране компьютера во время его загрузки обычно клавиша Del. Сконфигурировать или убкдится в правильной конфигурации установленный жесткий диск задав параметры Type Cylinder Heds Sectors и...
77738. Интерфейс Serial ATA 278.5 KB
  Часто среди обоснований перехода на новый стандарт в статьях называют ограниченную скорость передачи параллельного интерфейса в 133 мбайт с но это ограничение конкретной его версии а не его вида вообще а у Seril T не намного и больше 150 Мбайт с. Основные причины ввода Seril T. Их решением стал новый последовательный интерфейс АТА Seril T1 пришедший на смену параллельному интерфейсу физических накопителей.
77739. Диски и контроллеры SAS 1.93 MB
  SS может использовать и большой набор разновидностей RID. Такие гиганты как dptec или LSI Logic в своих продуктах предлагают расширенный набор функций для расширения миграции создания гнёзд и других возможностей в том числе касающихся распределённых массивов RID по нескольким контроллерам и приводам. Но SS это больше нежели интерфейс следующего поколения для профессиональных жёстких дисков хотя он идеально подходит для построения простых и сложных RIDмассивов на базе одного или нескольких RIDконтроллеров. Вместе с мощными...
77740. Интерфейс eSATA и высокоскоростной внешний кейс для десктопных винчестеров любой емкости 1.15 MB
  Интерфейс eST externl Seril T Вместе с тем с некоторых пор проблема выбора интерфейса для внешнего накопителя или контейнера для жестких дисков обрела очень симпатичное и оптимальное решение: внедрение последовательного дискового интерфейса Seril T изначально ориентированного на горячее подключение накопителей и увеличенную по сравнению с IDE длину сигнального кабеля позволило почти даром создавать внешние накопители и контейнеры просто выводя внутренний порт Seril T наружу компьютера. Именно так и поступали некоторые производители...
77741. ИССЛЕДОВАТЕЛЬСКИЙ ПОТЕНЦИАЛ И ПРИНЦИПЫ ЭФФЕКТИВНОСТИ ИССЛЕДОВАТЕЛЬСКОГО ПРОЦЕССА 42 KB
  Методологическая готовность проявляется в наличии цели и миссии исследования. Миссия исследования рассматривается как доминанта его проведения обеспечивающая последовательное движение к цели. Большое значение имеют: опыт исследования информационная база его проведения методика моделирования и оценок процессов или явлений доступность методов исследования наличие соответствующих технических средств квалификация исследователей.
77742. ФАКТОЛОГИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ИССЛЕДОВАНИЯ 42.5 KB
  От наличия и достаточности фактов зависит качество управленческих решений а следовательно и эффективность управления. Исследование управления также невозможно без фактов на которых оно строится. Роль фактов в исследовании заключается в том что они: очерчивают явление позволяют распознавать проблему определяют саму необходимость исследования создают мотивационное поле исследования.
77743. ОЦЕНКИ В ИСУ 52 KB
  Средством оценки является показатель. Оценки могут быть: программно-тестовые с использованием компьютерной техники; экспертные на основе работы группы экспертов. коллективные и индивидуальные; точные и приблизительные; эпизодические и периодические; общие и локальные; простые и сложные последние построены на специальных расчетах агрегировании информации построении синтетических показателей; Для достижения успеха исследования нужно уметь правильно выбирать вид оценки.