2488

Изучение свободных и вынужденных колебаний пружинного маятника

Лабораторная работа

Физика

Цель работы: ознакомление с основными законами колебательного движения, определение коэффициента жесткости пружины, проверка формулы периода колебаний пружинного маятника, определение логарифмического декремента затухания и коэффициента затухания, изучение явления резонанса при вынужденных колебаниях.

Русский

2013-01-06

77.26 KB

210 чел.

Министерство образования Республики Беларусь

Учреждение образования

«Гомельский государственный университет имени Ф.Скорины»

Отчет по лабораторной работе

Изучение свободных и вынужденных колебаний пружинного маятника

Выполнили:

студенты группы Ф–14

Кукобникова В.В.,

Лобан А.А.


Цель работы: ознакомление с основными законами колебательного движения, определение коэффициента жесткости пружины, проверка формулы периода колебаний пружинного маятника, определение логарифмического декремента затухания и коэффициента затухания, изучение явления резонанса при вынужденных колебаниях.

Приборы и принадлежности: установка, секундомер.

Теоретические сведения

Совокупность тел, способных совершать колебательное движение, называется колебательной системой. Будем изучать простую колебательную систему - пружинный маятник. Он представляет собой тело массы , подвешенное на упругой пружине.

Пусть -длинна недеформированной пружины, -величина деформации, которую испытывает пружина при подвешивании тела (статическое удлинение пружины). Тогда:

(1)

где -коэффициент упругости (жестокости) пружины.

Из (1) находим:

(2)

При смещении тела на величину X вдоль вертикали на него будет действовать сила:

(3)

Направленная к положению равновесия (в сторону обратную смещению)

Уравнение движения тела будет иметь вид:

(4)

Откуда:

(5)

где -круговая частота колебаний.

Период их:

(6)

Написанные уравнения характеризуют незатухающее гармоническое колебательное движение.

В случае наличия сил сопротивления, действующих на тело, колебания будут затухать. При малых скоростях движения тела, силу сопротивления можно считать пропорциональной скорости движения:

(7)

где -коэффициент сопротивления среды.

Уравнение движения тела в данном случае имеет вид:

(8)

а закон движения:

(9)

где -начальная амплитуда; -коэффициент затухания;

(10)

Амплитуда колебаний убывает по экспоненциальному закону.

Отношение амплитуд колебаний, соответствующих двум моментам времени, отличающихся друг от друга на период называют декрементом затухания:

Амплитуда двух последующих колебаний обычно мало отличаются друг от друга, поэтому для более точного определения логарифмического декремента затухания измеряют амплитуды, отстоящие друг от друга на периодов. Логарифмический декремент затухания в этом случае находится из формулы:

(11)

где и -амплитуды начального и конечного колебаний.

Колебания, которые совершаются за счет работы периодически меняющиеся внешней силы, называют вынужденными.

Пусть на тело действует внешняя сила, изменяющуюся по гармоническому закону с частотой , сила сопротивления пропорциональная скорости тела и упругой силе. Напишем уравнение движения тела:

(12)

где -амплитудное значение вынуждающей силы, при этом:

(13)

где -сдвиг фаз между колебаниями системы и колебаниями внешней силы.

То есть, тело будет совершать гармоническое колебательное движение с частотой внешней силы.

Амплитуда колебания:

(14)

где -частота собственных колебаний системы; -показатель затухания.

Явление резкого возрастания амплитуды вынужденных колебаний при приближении частоты вынуждающей силы к частоте собственных колебаний называется резонансом. Частота вынуждающей силы, при которой возникает резонанс, называется резонансной частотой , а величина максимальной амплитуды называется резонансной амплитудой .

Из формулы (14) можно получить:

(15)

(16)

Для маятников с массами и будем иметь:

Откуда:

 (17)

Для более точного определения периода колебаний будем измерять время , за которое совершается полных колебаний. Тогда:

 (18)


Ход работы

Упражнение № 1

Определение коэффициента жесткости пружины статическим методом.

1) Кладем на платформу груз и измеряем по шкале удлинения пружины.

2) Кладем другой груз и снова проделываем измерение деформации. Общее число грузов 5.

3) По формуле (2) определяем коэффициент жесткости пружины. Оцениваем ошибку измерения . Данные измерений и вычислений заносим в таблицу 1

Таблица № 1

Коэффициент жесткости пружины.

m,кг

1

0,05

0,005

98,00

49,41

49,41±35

2

0,10

0,02

49,00

3

0,15

0,04

36,75

4

0,20

0,06

32,67

5

0,25

0,08

30,63

Упражнение № 2

Проверка формулы периода колебаний пружинного маятника.

1) Кладем на платформу тело массой . Тогда масса маятника будет равна , где - масса платформы, г.

2) Выводим маятник из положения равновесия примерно на 70 мм и измеряем время , в течение которого совершается 5 полных колебаний.

3) По формуле (18) находим период. Опыт проделываем 5 раз и находим среднее значение периода.

4) Кладем на платформу другое тело и снова проделываем операции пункта 2. Результаты заносим в таблицу 2.

5) Определяем и . Оцениваем ошибки определения этих величин и .

6) Проверяем неравенства:

выполнение которых дает право утверждать, что величины и равны в пределах точности измерений.

Таблица №2

Период колебаний пружинного маятника для различных грузов.

N

N

1

0,225

5

3,02

2,87

0,57

0,325

5

3,40

3,36

0,67

2

2,62

3,41

3

2,64

3,54

4

2,84

3,25

5

3,24

3,21

Получим:

, т.е. 

0.7+0.0016>0.7-0.001

07-0.0016<0.7+0.001 , т.е. величины и равны в пределах точности измерений.

Упражнение № 3

Определение логарифмического декремента затухания и коэффициент затухания.

1) Кладем на платформу несколько грузов и определяем период колебаний маятника, как указано в упражнении 2.

2) Выводим тело из положения равновесия на величину и определяем время , за которое амплитуда колебаний уменьшается в 10 раз. Измерения проводим 5 раз.

3) По формуле определяем логарифмический декремент.

4) Коэффициент затухания находим по формуле

5) Определяем и . Результаты заносим в таблицы 3 и 3(а).

Таблица №3

Период колебаний пружинного маятника.

m гр. с платф., кг

, с

, с

, с

, с

, с

Средн.

0,325

0,66

0,67

0,69

0,65

0,68

0,67

Таблица № 3(а)

m гр. с платф., кг

, с

, с

, с

Средн.

0,325

6,08

4,90

6,73

6,10

5,16

5,79

Время , за которое амплитуда колебаний уменьшается в 10 раз.

А=15см=0,15м

А=15мм=0,015м

с.

Вывод: определили коэффициент жесткости пружины; проверили формулы периода колебаний пружинного маятника; определили логарифмический декремент затухания и коэффициент затухания.


 

А также другие работы, которые могут Вас заинтересовать

50512. АРХИВИРОВАНИЕ ДАННЫХ. РАБОТА С АРХИВАТОРАМИ КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ 159 KB
  Наиболее известные архиваторы Название Описание 7ZIP http: 7zip. Он поддерживает ZIP 7z RR CB GZIP BZIP2 и TRархивы. Степень сжатия которая достигается этим архиватором чрезвычайно высока при использовании родного формата 7zip но при использовании опций обычного ZIPформата степень сжатия меньше. LZip Мощная программа для работы как с Zipфайлами так и с архивами других форматов всего 35 и компрессирование разных форматов.
50513. Изучение затухающих электромагнитных колебаний в колебательном контуре с помощью осциллографа 519.5 KB
  Цель работы: Изучение с помощью электронного осциллографа электромагнитных колебаний возникающих в колебательном контуре содержащем индуктивность емкость и активное сопротивление; изучение условий возникновения затухающих колебаний в контуре; расчет основных физических...
50514. Использование СУБД ACCESS для публикация данных в Web 58 KB
  Результат создания страницы доступа к данным просмотреть в Web – броузере. Статические HTMLстраницы Такая Webстраница содержит некоторые неизменяемые данные полученные путем преобразования данных таблицы или запроса CCESS в документ формата HTML. При создании такой страницы создается один документ для каждой таблицы формы или страницы отчета CCESS.
50515. Создание запроса к внешним источникам данных 109.5 KB
  Регион адрес Город адрес Улица адрес Предприятие Статус предпр. Регион адрес Город адрес Улица адрес Семестр Учебный год Задолженность экзамены Задолженность зачеты Задолженность оплата Пол Задание 2.
50516. Безопасность систем баз данных. Методические указания 200 KB
  Методические указания к лабораторным работам по дисциплине Безопасность систем баз данных Для студентов специальности 090105 Комплексное обеспечение информационной безопасности автоматизированных систем Ижевск 2007 УДК. Методические указания предназначены для выполнения лабораторных работ по дисциплине Безопасность систем баз данных для студентов специальности 090105 – Комплексное обеспечение безопасности автоматизированных систем Данные методические указания предназначены для проведения...
50517. Реализация диалогового интерфейса в СУБД FoxPro. Язык запросов SQL 212 KB
  Форму можно создать с помощью мастера формы Form Wizrd Мастер формы. Создать структуру файла БД в соответствии с вариантом См. Создать форму с помощью мастера. Создать форму с помощью конструктора см.
50518. Безопасность жизнедеятельности. Лабораторный практикум 244.5 KB
  Оптимальные и допустимые величины показателей микроклимата устанавливаются в зависимости от: 1 периода года; холодный период года характеризуется среднесуточной температурой наружного воздуха 10оС и ниже теплый выше 10оС; 2 категории работ по уровню энергозатрат организма.54896 устанавливает что при температуре воздуха на рабочих местах 25 оС и выше...
50519. Закрытый склад. Расчет деревянной конструкции 373.77 KB
  В курсовом проекте произведен расчет деревянных конструкций гнутоклееной рамы. Определены расчетные и нормативные нагрузки на перекрытие и поперечную раму здания. Подобрано сечение элементов поперечника. Выбраны конструктивные решения. Осуществлены расчеты узлов поперечника.
50520. Исследование процессов во влажном воздухе 138.5 KB
  Изучение процессов изменения состояния влажного воздуха приобретение навыков измерения влажности с помощью аспирационного психрометра и Id диаграммы. Смесь сухого воздуха с водяным паром называется влажным воздухом. Соответственно этому влажный воздух бывает: насыщенным влажным воздухом – смесь сухого воздуха с насыщенным водяным паром; ненасыщенным влажным воздухом – смесь сухого воздуха с перегретым водяным паром. При дальнейшем охлаждении влажного воздуха происходит конденсация пара.