2488

Изучение свободных и вынужденных колебаний пружинного маятника

Лабораторная работа

Физика

Цель работы: ознакомление с основными законами колебательного движения, определение коэффициента жесткости пружины, проверка формулы периода колебаний пружинного маятника, определение логарифмического декремента затухания и коэффициента затухания, изучение явления резонанса при вынужденных колебаниях.

Русский

2013-01-06

77.26 KB

229 чел.

Министерство образования Республики Беларусь

Учреждение образования

«Гомельский государственный университет имени Ф.Скорины»

Отчет по лабораторной работе

Изучение свободных и вынужденных колебаний пружинного маятника

Выполнили:

студенты группы Ф–14

Кукобникова В.В.,

Лобан А.А.


Цель работы: ознакомление с основными законами колебательного движения, определение коэффициента жесткости пружины, проверка формулы периода колебаний пружинного маятника, определение логарифмического декремента затухания и коэффициента затухания, изучение явления резонанса при вынужденных колебаниях.

Приборы и принадлежности: установка, секундомер.

Теоретические сведения

Совокупность тел, способных совершать колебательное движение, называется колебательной системой. Будем изучать простую колебательную систему - пружинный маятник. Он представляет собой тело массы , подвешенное на упругой пружине.

Пусть -длинна недеформированной пружины, -величина деформации, которую испытывает пружина при подвешивании тела (статическое удлинение пружины). Тогда:

(1)

где -коэффициент упругости (жестокости) пружины.

Из (1) находим:

(2)

При смещении тела на величину X вдоль вертикали на него будет действовать сила:

(3)

Направленная к положению равновесия (в сторону обратную смещению)

Уравнение движения тела будет иметь вид:

(4)

Откуда:

(5)

где -круговая частота колебаний.

Период их:

(6)

Написанные уравнения характеризуют незатухающее гармоническое колебательное движение.

В случае наличия сил сопротивления, действующих на тело, колебания будут затухать. При малых скоростях движения тела, силу сопротивления можно считать пропорциональной скорости движения:

(7)

где -коэффициент сопротивления среды.

Уравнение движения тела в данном случае имеет вид:

(8)

а закон движения:

(9)

где -начальная амплитуда; -коэффициент затухания;

(10)

Амплитуда колебаний убывает по экспоненциальному закону.

Отношение амплитуд колебаний, соответствующих двум моментам времени, отличающихся друг от друга на период называют декрементом затухания:

Амплитуда двух последующих колебаний обычно мало отличаются друг от друга, поэтому для более точного определения логарифмического декремента затухания измеряют амплитуды, отстоящие друг от друга на периодов. Логарифмический декремент затухания в этом случае находится из формулы:

(11)

где и -амплитуды начального и конечного колебаний.

Колебания, которые совершаются за счет работы периодически меняющиеся внешней силы, называют вынужденными.

Пусть на тело действует внешняя сила, изменяющуюся по гармоническому закону с частотой , сила сопротивления пропорциональная скорости тела и упругой силе. Напишем уравнение движения тела:

(12)

где -амплитудное значение вынуждающей силы, при этом:

(13)

где -сдвиг фаз между колебаниями системы и колебаниями внешней силы.

То есть, тело будет совершать гармоническое колебательное движение с частотой внешней силы.

Амплитуда колебания:

(14)

где -частота собственных колебаний системы; -показатель затухания.

Явление резкого возрастания амплитуды вынужденных колебаний при приближении частоты вынуждающей силы к частоте собственных колебаний называется резонансом. Частота вынуждающей силы, при которой возникает резонанс, называется резонансной частотой , а величина максимальной амплитуды называется резонансной амплитудой .

Из формулы (14) можно получить:

(15)

(16)

Для маятников с массами и будем иметь:

Откуда:

 (17)

Для более точного определения периода колебаний будем измерять время , за которое совершается полных колебаний. Тогда:

 (18)


Ход работы

Упражнение № 1

Определение коэффициента жесткости пружины статическим методом.

1) Кладем на платформу груз и измеряем по шкале удлинения пружины.

2) Кладем другой груз и снова проделываем измерение деформации. Общее число грузов 5.

3) По формуле (2) определяем коэффициент жесткости пружины. Оцениваем ошибку измерения . Данные измерений и вычислений заносим в таблицу 1

Таблица № 1

Коэффициент жесткости пружины.

m,кг

1

0,05

0,005

98,00

49,41

49,41±35

2

0,10

0,02

49,00

3

0,15

0,04

36,75

4

0,20

0,06

32,67

5

0,25

0,08

30,63

Упражнение № 2

Проверка формулы периода колебаний пружинного маятника.

1) Кладем на платформу тело массой . Тогда масса маятника будет равна , где - масса платформы, г.

2) Выводим маятник из положения равновесия примерно на 70 мм и измеряем время , в течение которого совершается 5 полных колебаний.

3) По формуле (18) находим период. Опыт проделываем 5 раз и находим среднее значение периода.

4) Кладем на платформу другое тело и снова проделываем операции пункта 2. Результаты заносим в таблицу 2.

5) Определяем и . Оцениваем ошибки определения этих величин и .

6) Проверяем неравенства:

выполнение которых дает право утверждать, что величины и равны в пределах точности измерений.

Таблица №2

Период колебаний пружинного маятника для различных грузов.

N

N

1

0,225

5

3,02

2,87

0,57

0,325

5

3,40

3,36

0,67

2

2,62

3,41

3

2,64

3,54

4

2,84

3,25

5

3,24

3,21

Получим:

, т.е. 

0.7+0.0016>0.7-0.001

07-0.0016<0.7+0.001 , т.е. величины и равны в пределах точности измерений.

Упражнение № 3

Определение логарифмического декремента затухания и коэффициент затухания.

1) Кладем на платформу несколько грузов и определяем период колебаний маятника, как указано в упражнении 2.

2) Выводим тело из положения равновесия на величину и определяем время , за которое амплитуда колебаний уменьшается в 10 раз. Измерения проводим 5 раз.

3) По формуле определяем логарифмический декремент.

4) Коэффициент затухания находим по формуле

5) Определяем и . Результаты заносим в таблицы 3 и 3(а).

Таблица №3

Период колебаний пружинного маятника.

m гр. с платф., кг

, с

, с

, с

, с

, с

Средн.

0,325

0,66

0,67

0,69

0,65

0,68

0,67

Таблица № 3(а)

m гр. с платф., кг

, с

, с

, с

Средн.

0,325

6,08

4,90

6,73

6,10

5,16

5,79

Время , за которое амплитуда колебаний уменьшается в 10 раз.

А=15см=0,15м

А=15мм=0,015м

с.

Вывод: определили коэффициент жесткости пружины; проверили формулы периода колебаний пружинного маятника; определили логарифмический декремент затухания и коэффициент затухания.


 

А также другие работы, которые могут Вас заинтересовать

61530. Животные 21.94 KB
  Подготовка к новому материалу 10 мин Физ. минутка 1 мин Объяснение новой темы 15 мин Физ. минутка 1 мин Закрепление пройденного 10 мин Итог урока 2 мин Ход урока Этап работы Содержание работы Примечание...
61531. Использование элементов фольклора по теме «Глагол» 36.86 KB
  Цель: Научить детей распознавать глагол как часть речи на примере устного народного творчества. б Закреплять умение ставить вопрос к глаголу.
61534. Понятие об одушевленных и неодушевленных существительных 20.54 KB
  Цель урока: открыть новые знания: имена существительные которые отвечают на вопрос: Кто обозначающие живой предмет живых существ умеющих самостоятельно бегать летать плавать хватать пищу наделенные душевными переживаниями называются одушевленными...
61535. Система счисления 14.57 KB
  Система счисления Система счисления символический метод записи чисел представление чисел с помощью письменных знаков. Вес разряда число равное основанию системы счисления в степени номера разряда.
61536. Виды алгоритмов 14.83 KB
  Цель: закрепить знания учащихся о записи алгоритма и работы с ним. Задачи: Напомнить учащимся как выглядит алгоритм на письме Закрепить навыки работы с программой Word Организационный момент.
61537. Жизнь древних славян 21.73 KB
  Педагогические задачи: Образовательная: формировать представление о жизни древних славян. Конечный результат: расширятся знания о жизни древних славян об их быте и культуре.
61538. Способы получения информации 20.44 KB
  Цели: Научить учащихся выделять ситуации в которых встречаются действия с информацией; различать основные способы получения информации человеком.