2490

Изучение физического маятника

Лабораторная работа

Физика

Цель работы: Исследование законов колебательного движения физического маятника и определение ускорения свободного падения.

Русский

2013-01-06

99.16 KB

25 чел.

Министерство образования Республики Беларусь

Учреждение образования

«Гомельский государственный университет имени Ф.Скорины»

Отчет по лабораторной работе

Изучение физического маятника

Выполнили:

студенты группы Ф–14

Кукобникова В.В.,

Лобан А.А.


Цель работы: Исследование законов колебательного движения физического маятника и определение ускорения свободного падения.

Приборы и принадлежности: установка FPM-04, линейка.

Краткие теоретические сведения

Физическим маятником (ФМ) называется твёрдое тело, совершающее под действием силы тяжести колебания вокруг неподвижной горизонтальной оси. Точка О пересечения этой оси с вертикальной плоскостью, проходящей через центр масс маятника, называется точкой подвеса.

Согласно основному уравнению динамики вращательного движения, в отсутствии сил сопротивления, уравнение движения ФМ имеет вид:

 (1)

где I - момент инерции маятника относительно оси качания, - угловое ускорение маятника, m - масса маятника, l - расстояние от точки подвеса до центра масс маятника.

Ограничиваясь, случаем малых углов () из (1) имеем:

 (2)

где введено обозначение

Нетрудно убедится, что решением записанного дифференциального уравнения (2) является функция:

т.е. угол  отклонения ФМ от вертикали изменяется по гармоническому закону. Следовательно, период колебаний ФМ равен:

 (3)

Как известно, период математического маятника:

 (4)

Сравнивая (3) и (4) находим, что ФМ колеблется с тем же периодом, что и математический, имеющий длину:

 (5)

Длина математического маятника , имеющего тот же период колебаний, что и данный ФМ, называется приведённой длиной физического маятника.

Точка , лежащая на прямой, соединяющей точку подвеса и центр тяжести с ФМ, на расстоянии от точки подвеса, называется центром качаний ФМ.

Точка подвеса О и центр качаний ФМ принято называть взаимными точками ФМ, так как они обладают следующим свойством: если перенести точку подвеса маятника в центр качаний, то прежняя точка подвеса станет центром качаний, причём период колебаний ФМ при этом не изменяется.

Экспериментальная проверка формул (4) и (5) составляет одну из задач данной работы.

Получим формулы (4) и (5) для ФМ, выполненного в виде тонкого однородного стержня массой m и длины l. Момент инерции тонкого стержня относительно оси, проходящей через центр масс С перпендикулярно плоскости рисунка, равен . По теореме Штейнера находим, что момент инерции стержня относительно оси качаний:

 (6)

Подставим (6) в (4) и (5), приходим к соотношению:

 (7)

 (8)

 (9)

 (10)

Соотношение удобно для анализа и экспериментальной проверки. В частности, из анализа на экстремум функции (7) следует, что при:

 (11)

Период Т физического маятника является минимальным.


Выполнение работы

Упражнение 1

Проверка формулы периода колебаний и определение приведённой длины физического маятника.

  1.  Определяем время t 10- 15 полных колебаний стержня. Результаты измерений заносим в таблицу 1 и определяем .

Таблица 1

N

t, (с)

T, (с)

h, (м)

l, (м)

Lпр, (м)

1

10

12,11

-

0,6

0,24

0,365

2

10

12,22

3

10

12,16

4

10

12,18

5

10

12,91

Ср. знач.

10

12,12

1,21

-

-

-

t = (12,12±0.0016) c.

  1.  По формуле , где N- число полных колебаний стержня, рассчитываем период колебаний ФМ.

с.

  1.  Измеряем длину стержня h и расстояние l от точки подвеса до центра тяжести, проверяем справедливость формулы (8).

; .

  1.  Пользуясь формулой (10) рассчитываем приведённую длину ФМ.

  1.  Повернув верхний кронштейн установки на и установив длину математического маятника определяем период колебаний математического маятника. Результаты измерений заносим в таблицу 2.

Таблица2

N

t, ( с)

Tмат, (с)

1

10

11,26

1,15

2

10

11,61

3

10

11,56

4

10

11,91

5

10

11,48

Ср. знач.

-

11,56

-

  1.  Сравниваем периоды колебаний физического и математического маятников.

Периоды колебаний физического и математического маятника, длина которого является приведенной длиной данного физического маятника, равны.


Упражнение 2

Исследование формулы периода колебаний ФМ.

  1.  Последовательно увеличивая расстояние L на 10 мм, измеряем время t 10-15 полных колебаний. Результаты заносим в таблицу 3.

Таблица 3

N

t1

t2

t3

Ср.знач. t

l, (м)

T, (c)

1

10

26,18

26,74

26,38

26,43

0,01

2,643

2

10

21,29

21,22

21,19

21,23

0,02

2,123

3

10

18,01

18,11

18,34

18,15

0,03

1,815

4

10

16,50

16,26

16,24

16,33

0,04

1,633

5

10

15,00

15,12

15,01

15,04

0,05

1,504

6

10

14,06

13,87

14,02

13,98

0,06

1,398

7

10

13,57

13,61

13,50

13,56

0,07

1,356

8

10

12,87

12,53

12,71

12,70

0,08

1,270

9

10

12,64

12,35

12,24

12,41

0,09

1,241

10

10

12,20

12,24

12,11

12,18

0,10

1,218

11

10

11,79

11,89

11,81

11,83

0,11

1,183

12

10

11,70

11,73

11,90

11,78

0,12

1,178

13

10

11,64

11,55

11,50

11,56

0,13

1,156

14

10

11,50

11,37

11,46

11,44

0,14

1,144

15

10

11,48

11,29

11,34

11,37

0,15

1,137

16

10

11,40

11,38

11,21

11,33

0,16

1,133

17

10

11,43

11,53

11,23

11,40

0,17

1,140

18

10

11,30

11,71

11,24

11,42

0,18

1,142

  1.  По результатам таблицы 2 строим график зависимости T.

l, см

Поведение графика объясняется на основании формулы .

  1.  По данным таблицы 2 строим график зависимости от и убеждаемся, что она является линейной.

, м

Вывод: исследовав законы колебательного движения физического маятника, определили, что время колебаний уменьшалось до определенного этапа, после чего оно опять стало увеличиваться; выяснили, что периоды колебаний физического и математического маятника, длина которого является приведенной длиной данного физического маятника, равны; период физического маятника не зависит от свойств вещества, из которого изготовлен ФМ, его массы, плотности, а определяется лишь расстоянием от точки подвеса до центра тяжести тела.


 

А также другие работы, которые могут Вас заинтересовать

10379. Разработка идей естественного права в трудах мыслителей эпохи просвещения 36.5 KB
  Разработка идей естественного права в трудах мыслителей эпохи просвещения. Уже в XIX в. нормативно ценностный подход дал повод для критического к нему отношения. С одной стороны политической мыслью был сформулирован ряд идей которые выражали постепенное движение обще
10380. Развитие идей гражданского общества и государства 31 KB
  Развитие идей гражданского общества и государства. Рассмотрим пять основных типов политических систем в обобщенном виде: 1. Рабовладельческая феодальная капиталистическая социалистическая система с капиталистической или социалистической ориентацией основой тип...
10381. Ресурсы и легитимность политической власти 31.5 KB
  Ресурсы и легитимность политической власти. Успех функционирования политической власти зависит от многих факторов. Среди них весьма важная роль отводится ее законности признанию обществом ее права на руководящую роль. В политологии данная характеристика обозначае...
10382. Политическая система общества структура и функции 29.5 KB
  Политическая система общества структура и функции. Теория политической системы возникла в середине 50х годов когда для этого были созданы определенные научные предпосылки а политика стала играть слишком большую роль в жизни стран и народов что потребовало использо...
10383. Основные идейно-политические теории в современном мире 51 KB
  Основные идейно-политические теории в современном мире. Политическая теория от греч. theoria наблюдение исследование система знаний идей о политике отражающая и характеризующая процессы и явления политической жизни общества международных отношений и определенны...
10384. Развитие политической мысли в России 28 KB
  Развитие политической мысли в России. Формирование государственности у славян осуществлялось на протяжении длительного времени. Одним из ранних источников в котором уделяется значительное место решению политикоправовых проблем является Слово о законе и благодати
10385. Лоббизм в политике 24.5 KB
  Лоббизм в политике. Лоббизм это различные формы и методы воздействия бизнеса других общественных групп на представителей законодательной и исполнительной властей в целях добиться от них принятия выгодных для себя решений. Конечно же лоббизм практикуется и в рам...
10386. Современный политический экстремизм и его проявления 25 KB
  Современный политический экстремизм и его проявления. Развитие всех современных идейнополитических направлений осложняется наличием в обществе весьма активного экстремизма. Экстремистскими называют разные идейнополитические течения: неофашистские и троцкистс...
10387. Періодична система хімічних елементів Д. І. Менделєєва 243.5 KB
  Тема: Періодична система хімічних елементів д. і. менделєєва Навчальна мета: розгляути характер руху електрона; ввести поняття орбіталь енергетичний рівень і енергетичний підрівень; розглянути та проаналізувати правила заповнення електронних шарів атомів хімі