24978

Работа в термодинамике. Внутренняя энергия. Первый закон термодинамики. Применение первого закона к изопроцессам. Адиабатный процесс

Шпаргалка

Физика

Существуют два способа изменения внутренней энергии: теплопередача и совершение механической работы например нагревание при трении или при сжатии охлаждение при расширении. Теплопередача это изменение внутренней энергии без совершения работы: энергия передается от более нагретых тел к менее нагретым. Теплопередача бывает трех видов: теплопроводность непосредственный обмен энергией между хаотически движущимися частицами взаимодействующих тел или частей одного и того же тела; конвекция перенос энергии потоками жидкости или газа и...

Русский

2013-08-09

29.5 KB

24 чел.

Билет № 11

Работа в термодинамике. Внутренняя энергия. Первый закон термодинамики. Применение первого закона к изопроцессам. Адиабатный процесс.

План ответа

1. Внутренняя энергия и ее измерение. 2. Работа в термодинамике. 3. Первый закон термодинамики. 4. Изопроцессы. 5. Адиабатный процесс.

Каждое тело имеет вполне определенную структуру, оно состоит из частиц, которые хаотически движутся и взаимодействуют друг с другом, поэтому любое тело обладает внутренней энергией. Внутренняя энергия — это величина, характеризующая собственное состояние тела, т. е. энергия хаотического (теплового) движения микрочастиц системы (молекул, атомов, электронов, ядер и т. д.) и энергия взаимодействия этих частиц. Внутренняя энергия одноатомного идеального газа определяется по формуле U=3/2 т/М • RT.

Внутренняя энергия тела может изменяться только в результате его взаимодействия с другими телами. Существуют два способа изменения внутренней энергии: теплопередача и совершение механической работы (например, нагревание при трении или при сжатии, охлаждение при расширении).

Теплопередача — это изменение внутренней энергии без совершения работы: энергия передается от более нагретых тел к менее нагретым. Теплопередача бывает трех видов: теплопроводность (непосредственный обмен энергией между хаотически движущимися частицами взаимодействующих тел или частей одного и того же тела); конвекция (перенос энергии потоками жидкости или газа) и излучение (перенос энергии электромагнитными волнами). Мерой переданной энергии при теплопередаче является количество теплоты (Q).

Эти способы количественно объединены в закон сохранения энергии, который для тепловых процессов читается так. Изменение внутренней энергии замкнутой системы равно сумме количества теплоты, переданной системе, и работы, внешних сил, совершенной над системой. D U= Q + А, где D U— изменение внутренней энергии, Q — количество теплоты, переданной системе, А работа внешних сил. Если система сама совершает работу, то ее условно обозначают А'. Тогда закон сохранения энергии для тепловых процессов, который называется первым законом термодинамики, можно записать так: Q = Α' + D U, т. е. количество теплоты, переданное системе, идет на совершение системой работы и изменение ее внутренней энергии.

При изобарном нагревании газ совершает работу над внешними силами Α' = p(V1-V2) = pΔV, где

V1, и V2 начальный и конечный объем газа. Если процесс не является изобарным, величина работы может быть определена площадью фигуры, заключенной между линией, выражающей зависимость p(V) и начальным и конечным объемом газа (рис. 13).

Рассмотрим применение первого закона термодинамики к изопроцессам, происходящим с идеальным газом.

В изотермическом процессе температура постоянная, следовательно, внутренняя энергия не меняется. Тогда уравнение первого закона термодинамики примет вид: Q = А', т. е. количество теплоты, переданное системе, идет на совершение работы при изотермическом расширении, именно поэтому температура не изменяется.

В изобарном процессе газ расширяется и количество теплоты, переданное газу, идет на увеличение его внутренней энергии и на совершение им работы: Q = D U + А'.

При изохорном процессе газ не меняет своего объема, следовательно, работа им не совершается, т. е., А = О, и уравнение первого закона имеет вид:

Q = D U, т. е. переданное количество теплоты идет на увеличение внутренней энергии газа.

Адиабатным называют процесс, протекающий без теплообмена с окружающей средой. Q = 0, следовательно, газ при расширении совершает работу за счет уменьшения его внутренней энергии, следовательно, газ охлаждается, Α' = D U. Кривая, изображающая адиабатный процесс, называется адиабатой.


 

А также другие работы, которые могут Вас заинтересовать

22025. Собственное свечение клеток и тканей животных 78.5 KB
  Строение Фазовые переходы липидов в мембранах Диффузия как результат случайных блужданий частиц Диффузия ионов при наличии электрического поля Кинетика реакций цепного окисления липидов Cвечение сопровождающее биохимические реакции Активированная хемилюминесценция и биолюминесценция как инструмент в медикобиологических исследованиях Метод электронного парамагнитного резонанса Кинетика химических реакций Кальциевый насос животной клетки Реакции окисления восстановления .
22026. Метод ДСК 195 KB
  Температуры плавления некоторых синтетических фосфолипидов Жирные кислоты Название остатка жирной кислоты Сокращённое название фосффолипида Температура плавления Tc oC 14:0 Миристоил ДМЛ 23 16:0 Пальмитоил ДПЛ 41 18:0 Стеароил ДСЛ 58 18:1 Олеил ДОЛ 21цисформа Полное название фосфолипидов: ДМЛ 12димиристоилфосфатидилхолин еще одно возможное сокращение ДМФХ€ и так далее. На первом этапе нас будут интерессовать три из них: Температура фазового перехода плавления Tc. T полуширина фазового перехода Tc температура...
22027. Активированная хемилюминесценция и биолюминесценция 114 KB
  Так например комплекс редкоземельного иона европия Eu3 c антибиотиком хлортетрациклином усиливает ХЛ при окислении липидов почти в 1000 раз. Хемилюминесцентный иммунный анализ По идеологии хемилюминесцентный иммунный анализ не отличается от радиоиммунного с той только разницей что вместо радиоактивномеченных субстратов или антител используются субстраты и антитела меченные соединением которое вступает в реакции сопровождающиеся хемилюминесценцией в присутствии перекиси водорода и катализатора обычно это фермент пероксидаза....
22028. Биологические мембраны Строение, свойства, функции 403 KB
  Клеточная или цитоплазматическая мембрана окружает каждую клетку. Ядро окружено двумя ядерными мембранами: наружной и внутренней. Все внутриклеточные структуры: митохондрии эндоплазматический ретикулум аппарат Гольджи лизосомы пероксисомы фагосомы синаптосомы и т представляют собой замкнутые мембранные везикулы пузырьки.
22029. Мембранные потенциалы 232.5 KB
  Более подробно межфазные и поверхностные потенциалы будут рассмотрены позже а сейчас мы рассмотрим как повлияет на перенос ионов наличие на мембране трансмембранного потенциала. Однако липидная часть мембраны состоит всегото из двух слоёв молекул фосфолипидов причём размеры подвижных звеньев цепей жирных кислот в этих молекулах соизмеримы с размерами ионов которые передвигаются внутри мембраны. Это заставляет при рассмотрении переноса ионов в мембране отказаться от полностью макроскопического подхода к явлениям и рассматривать процессы на...
22030. Перемещения иона в мембране 347 KB
  В случа переноса ионов через биомембраны за ось Х можно принять ось нормальную к мембране и направленную изнутри везикулы например клетки наружу см. Как же перемещается ион в толще липидного слоя мембраны В разделе 1 говорилось о том что такое перемещение возможно благодаря перестройке конфигурации жирнокислотных цепей и образованию нового кинка . Движение иона поперёк мембраны путём перескакивания из одного кинка в другой. На рисунке показаны не разные молекулы фосфолипидов в бислое а разные стадии процесса переноса иона...
22031. Системы передачи с временным разделением каналов 139 KB
  Напомним что для преобразования аналогового сигнала в цифровой используются операции ДИСКРЕТИЗАЦИЯ КВАНТОВАНИЕ КОДИРОВАНИЕ. Значение шума квантования зависит от количества уровней квантования скорости изменения сигнала и от спосрба выбора шага квантования. не зависит от а } = где вероятность попадания сигнала в iю зону квантования. зависит лишь от шага квантования и не зависит от уровня сигнала.
22032. Дельта - модуляция (кодирование с предсказанием) (ДИКМ) 158.5 KB
  Основные параметры характеристики компрессии по А – закону приведены в таблице: № сегмента Вид кодовой комбинации P XYZ ABCD Относительный интервал изменения входного сигнала Значение шага квантования относительно Uогр 0 P 000 ABCD 0  1 128 1 2048 1 P 001 ABCD 1 128  1 64 1 2048 2 P 010 ABCD 1 64  1 32 1 1024 3 P 011 ABCD 1 32  1 16 1 512 4 P 100 ABCD 1 16  1 8 1 256 5 P 101 ABCD 1 8  1 4 1 128 6 P 110 ABCD 1 4  1 2 1 64 7 P 111 ABCD 1 2  1 1 32 Кодовая комбинация и есть код квантованного сигнала P  ABCD ...
22033. Особенности передачи сигналов данных 67 KB
  Качество передачи при этом оценивается не искажениями формы сигналов как в аналоговых системах а числом ошибок в принятой информации т. верностью передачи. В хороших модемах перед началом передачи информации вначале устанавливается связь между модемами которые автоматически обмениваясь сигналами подстраиваются под конкретную линию связи и автоматически выбирают необходимую скорость передачи а затем передают саму информацию.