24980

Работа и мощность в цепи постоянного тока. Электродвижущая сила. Закон Ома для полной цепи

Шпаргалка

Физика

Работа тока. В электрическом поле из формулы определения напряжения U = A q легко получить выражение для расчета работы переноса электрического заряда А = Uq так как для тока заряд q = It то работа тока: А = Ult или А = I2R t = U2 R t. При прохождении тока по проводнику количество теплоты выделившейся в проводнике прямо пропорционально квадрату силы тока сопротивлению проводника и времени прохождения тока.

Русский

2013-08-09

26 KB

86 чел.

Билет № 14

Работа и мощность в цепи постоянного  тока. Электродвижущая сила. Закон Ома для полной цепи

План ответа

1. Работа тока. 2. Закон ДжоуляЛенца 3. Электродвижущая сила. 4. Закон Ома для полной цепи.

В электрическом поле из формулы определения напряжения (U = A/q) легко получить выражение для расчета работы переноса электрического заряда А = Uq, так как для тока заряд q = It, то работа тока: А = Ult, или А = I2R t = U2/R t.

Мощность, по определению, N = A/t, следовательно, N = UI = I2 R = U2/R.

Русский ученый X. Ленц и английский ученый Джоуль опытным путем в середине прошлого века установили независимо друг от друга закон, который называется законом ДжоуляЛенца и читается так. При прохождении тока по проводнику количество теплоты, выделившейся в проводнике, прямо пропорционально квадрату силы, тока, сопротивлению проводника и времени прохождения тока. 

Q = I2Rt.

Полная замкнутая цепь представляет собой электрическую цепь, в состав которой входят внешние сопротивления и источник тока (рис. 18). Как один из участков цепи, источник тока обладает сопротивлением, которое называют внутренним, г.

Для того чтобы ток проходил по замкнутой цепи, необходимо, чтобы в источнике тока зарядам сообщалась дополнительная энергия, она берется за счет работы по перемещению зарядов, которую производят силы неэлектрического происхождения (сторонние силы) против сил электрического поля. Источник тока характеризуется энергетической характеристикой, которая называется ЭДС электродвижущая сила источника. ЭДС характеристика источника энергии неэлектрической природы в электрической цепи, необходимого для поддержания в ней электрического тока. ЭДС измеряется отношением работы сторонних сил по перемещению вдоль замкнутой цепи положительного заряда к этому заряду ξ= Aст/q

Пусть за время t через поперечное сечение проводника пройдет электрический заряд q. Тогда работу сторонних сил при перемещении заряда можно записать так:     Aст = ξ q. Согласно определению силы тока q = It, поэтому Aст = ξ I t. При совершении этой работы на внутреннем и внешнем участках цепи, сопротивления которых R и г, выделяется некоторое количество теплоты. По закону ДжоуляЛенца оно равно:       Q =I2Rt + I2rt. Согласно закону сохранения энергии А = Q. Следовательно, ξ•= IR + Ir. Произведение силы тока на сопротивление участка цепи часто называют падением напряжения на этом участке. Таким образом, ЭДС равна сумме падений напряжений на внутреннем и внешнем участках замкнутой цепи. Обычно это выражение записывают так: I = ξ/(R + r). Эту зависимость опытным путем получил Г. Ом, называется она законом Ома для полной цепи и читается так. Сила тока в полной цепи прямо пропорциональна ЭДС источника тока и обратно пропорциональна полному сопротивлению цепи. При разомкнутой цепи ЭДС равна напряжению на зажимах источника и, следовательно, может быть измерена вольтметром. 


 

А также другие работы, которые могут Вас заинтересовать

15292. Використання адресної арифметики для роботи з вказівниками 62 KB
  Використання адресної арифметики для роботи з вказівниками Лабораторна робота Тема: Використання адресної арифметики для роботи з вказівниками Мета роботи: Навчитись створювати вказівники описувати їх і задавати; оволодіти основними с
15293. Изучение свойств Р-N перехода и определение запрещенной зоны проводника 77 KB
  Отчёт по лабораторной работе № 36. Изучение свойств РN перехода и определение запрещенной зоны проводника. Расчетная формула для измерения величины ...
15294. Изучение радиоактивного излучения 80 KB
  В данной лабораторной работе мы исследовали ослабление излучения защитными материалами, а так же исследовали элементы дозиметрии излучения. Измеряли и рассчитывали величину фона, экспозиционную дозу, поглощенную дозу и эквивалентную дозу для случаев
15295. Изучение эффекта холла 49 KB
  В данной работе я изучил эффект холла, получив при этом конкретные значения холловского коэффициента и концентрации свободных электронов. При выполнении работы я пользовался гальванометром, амперметром
15296. Определение молярной массы и плотности газа 55 KB
  В результате проделанной работы я получил конечные значения молярной массы и плотности воздуха. Сравнил с табличными значениями: оказалось, что разница между полученными и табличными значениями очень мала, лишь небольшое расхождение
15297. Изучение магнитного поля соленоида балестическим методом 81 KB
  В результате проделанной работы я познакомился с баллестическим методом измерения магнитного поля соленоида, получил зависимость его от силы тока и от расстояния от центра соленоида. В результате измерений получил конкретные значения, сравнил с теоретическими
15298. Изучение явления поляризации света 58.5 KB
  В результате проделанной работы я познакомился с методами получения значения концентрации веществ в водном растворе с помощью специальных устройств, действие которых основано на измерении угла поляризации света. В итоге получил определённые значения. Также получил и погрешности в результате
15299. Снятие кривой намагничивания ферромагнитного образца 69.5 KB
  В результате проделанной работы я познакомился с методами получения кривой намагничивания ферромагнитного образца, построил графики зависимости В(В0) и М(В0). Получившаяся кривая практически совпадает с табличными значениями. Не значительные расхождения свазаны с наличием погрешностей в данной лабораторной работе
15300. Измерение удельного заряда электрона методом магнетрона 56.5 KB
  В результате проделанной работы я познакомился с измерением заряда электрона методом магнетрона, получил зависимость анодного тока от тока в соленоиде. В результате получил конкретные значения, которые сравнил с теоретическими