24984

Явление самоиндукции. Индуктивность. Электромагнитное поле

Шпаргалка

Физика

Явление самоиндукции заключается в появлении ЭДС индукции в самом проводнике при изменении тока в нем. Примером явления самоиндукции является опыт с двумя лампочками подключенными параллельно через ключ к источнику тока одна из которых подключается через катушку рис. Это происходит потому что после замыкания ключа ток достигает максимального значения не сразу магнитное поле нарастающего тока породит в катушке индукционную ЭДС которая в соответствии с правилом Ленца будет мешать нарастанию тока. Для самоиндукции выполняется...

Русский

2013-08-09

27.5 KB

38 чел.

Билет № 18

Явление самоиндукции. Индуктивность. Электромагнитное поле

План ответа

1. Опыты по самоиндукции. 2. ЭДС самоиндукции. 3. Индуктивность. 4. Энергия магнитного поля.

Явление самоиндукции заключается в появлении ЭДС индукции в самом проводнике при изменении тока в нем. Примером явления самоиндукции является опыт с двумя лампочками, подключенными параллельно через ключ к источнику тока, одна из которых подключается через катушку (рис. 28). При замыкании ключа лампочка 2, включенная через катушку, загорается позже лампочки 1. Это происходит потому, что после замыкания ключа ток достигает максимального значения не сразу, магнитное поле нарастающего тока породит в катушке индукционную ЭДС, которая в соответствии с правилом Ленца будет мешать нарастанию тока.

Для самоиндукции выполняется установленный опытным путем закон: ЭДС самоиндукции прямо пропорциональна скорости изменения тока в проводнике. ξ = L ΔI/t.

Коэффициент пропорциональности L называют индуктивностью. Индуктивность это величина, равная ЭДС самоиндукции при скорости изменения тока в проводнике 1 А/с. Индуктивность измеряется в генри (Гн). 1 Гн = 1 Вс/А. 

1 генри это индуктивность такого проводника, в котором возникает ЭДС самоиндукции 1 вольт при скорости изменения тока 1 А/с. Индуктивность характеризует магнитные свойства электрической цепи (проводника), зависит от магнитной проницаемости среды сердечника, размеров и формы катушки и числа витков в ней.

При отключении катушки индуктивности от источника тока лампа, включенная параллельно катушке, дает кратковременную вспышку (рис. 29). Ток в цепи возникает под действием ЭДС самоиндукции. Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки. Энергия магнитного поля находится по формуле

Wm == LI2/2.

Энергия магнитного поля зависит от индуктивности проводника и силы тока в нем. Эта энергия может переходить в энергию электрического поля. Вихревое электрическое поле порождается переменным магнитным полем, а переменное электрическое поле порождает переменное магнитное поле, т. е. переменные электрическое и магнитное поля не могут существовать друг без друга. Их взаимосвязь позволяет сделать вывод о существовании единого электромагнитного поля. Электромагнитное поле, одно из основных физических полей, посредством которого осуществляется взаимодействие электрически заряженных частиц или частиц, обладающих магнитным моментом. Электромагнитное поле характеризуется напряженностью электрического поля и магнитной индукцией. Связь между этими величинами и распределением в пространстве электрических зарядов и токов была установлена в 60-х годах прошлого столетия Дж. Максвеллом. Эта связь носит название основных уравнений электродинамики, которые описывают электромагнитные явления в различных средах и в вакууме. Получены эти уравнения как обобщение установленных на опыте законов электрических и магнитных явлений.


 

А также другие работы, которые могут Вас заинтересовать

73697. Генерирование колебаний в электрических цепях 668.5 KB
  В цепях, содержащих обратные связи, могут возникнуть изменяющиеся во времени электрические токи без воздействия на эти цепи внешних управляющих сигналов. Такие цепи называют автоколебательными системами, а колебания - автоколебаниями.
73698. Цели и задачи дисциплины «Экономика ресурсосбережения». Значение ресурсосбережения в современных условиях. Причины современного состояния в сфере ресурсосбережения 55 KB
  Экономика ресурсосбережения наука отражающая формы производственных отношений в процессе рационального использования воспроизводства природных ресурсов и охраны окружающей среды. На протяжении всей своей жизни человечество сталкивалось с ограниченностью ресурсов. С 1996 года в России действуют 2 структуры – Комитет по охране окружающей среды Министерство природных ресурсов. Исследование шло по пяти глобальным направлениям мировой динамики – ускорение индустриализации быстрый рост населения нарастание голода истощение невозобновляемых...
73701. Работа сил электростатического поля 223.5 KB
  Работа сил электростатического поля по перемещению заряда по замкнутому контуру равна нулю. Эта формула справедлива не только для поля точечного заряда но и для электростатического поля вообще. Работа сил электростатического поля по замкнутому контуру называется циркуляцией вектора напряженности электростатического поля. Стокса циркуляция вектора напряженности электростатического поля по контуру L равна потоку ротора поля через поверхность.
73702. Эквипотенциальные поверхности 353 KB
  Нельзя ли нарисовать поле с точки зрения скаляра. Поле точечного заряда. Электрическим диполем называется пара точечных зарядов разного знака одинаковых по модулю жестко закрепленных на одинаковом расстоянии друг от друга. Рассчитаем поле диполя.
73703. Dектор электрической индукции и вектор поляризации 199 KB
  Ранее были введены следующие два вектора: вектор электрической индукции и – вектор поляризации. Где проекция вектора на любое направление параллельное плоскости. Граничные условия для вектора так же выполняются т. Гаусса выполняется и для вектора но вектор не реагирует на внешние заряды – только на поляризационные.
73704. Электростатика проводников 156.5 KB
  В проводнике заряды могут двигаться при наложении маленьких полей в пределе бесконечно малых. Проводник – это такая среда содержащая свободные заряды которые можно перемещать по объему без совершения работы идеальный проводник. Такие проводники в природе существуют.
73705. Конденсатор. Параллельное и последовательное соединение конденсаторов 110 KB
  Можно выбрать сколько угодно проводников диэлектриков и подать на два выбранных проводника некоторые противоположные заряды и померить разность потенциалов между выбранными проводниками. Зарядим обе сферы равными по модулю и противоположными по знаку зарядами. Помещаем на платинах разноимённые заряды . Если представить что мы создали данную разность потенциалов на каждом конденсаторе отдельно а потом соединили их то сумма зарядов при присоединении не изменится ни справа ни слева .