24994

Импульс тела. Закон сохранения импульса в природе и технике

Шпаргалка

Физика

Импульс тела. Простые наблюдения и опыты доказывают что покой и движение относительны скорость тела зависит от выбора системы отсчета; по второму закону Ньютона независимо от того находилось ли тело в покое или двигалось изменение скорости его движения может происходить только при действии силы т. в результате взаимодействия с другими телами.

Русский

2013-08-09

137.5 KB

79 чел.

Билет3

Импульс тела. Закон сохранения  импульса в природе и технике

План ответа

1. Импульс тела. 2. Закон сохранения импульса. 3. Применение закона сохранения импульса. 4. Реактивное движение.

Простые наблюдения и опыты доказывают, что покой и движение относительны, скорость тела зависит от выбора системы отсчета; по второму закону Ньютона, независимо от того, находилось ли тело в покое или двигалось, изменение скорости его движения может происходить только при действии силы, т. е. в результате взаимодействия с другими телами. Однако существуют величины, которые могут сохраняться при взаимодействии тел. Такими величинами являются энергия и импульс.

Импульсом тела называют векторную физическую величину, являющуюся количественной характеристикой поступательного движения тел. Импульс обозначается р. Единица измерения импульса Р — кг • м/с. Импульс тела равен произведению массы тела на его скорость: р = mv. Направление вектора импульса р совпадает с направлением вектора скорости тела v (рис. 4).

Для импульса тел выполняется закон сохранения, который справедлив только для замкнутых физических систем. В общем случае замкнутой называют систему, которая не обменивается энергией и массой с телами и полями, не входящими в нее. В механике замкнутой называют систему, на которую не действуют внешние силы или действие этих сил скомпенсировано. В этом случае р1 = р2 где р1 начальный импульс системы, а р2 конечный. В случае двух тел, входящих в систему, это выражение имеет вид m1v1 + т2v2 = m1v1' + т2v2' где т1 и  т2 массы тел, а v1 и v2, — скорости до взаимодействия, v1' иv2' скорости после взаимодействия. Эта формула и является математическим выражением закона сохранения импульса: импульс замкнутой физической системы сохраняется при любых взаимодействиях, происходящих внутри этой системы. 

Другими словами: в замкнутой физической системе геометрическая сумма импульсов тел до взаимодействия равна геометрической сумме импульсов этих тел после взаимодействия. В случае незамкнутой системы импульс тел системы не сохраняется. Однако, если в системе существует направление, по которому внешние силы не действуют или их действие скомпенсировано, то сохраняется проекция импульса на это направление. Кроме того, если время взаимодействия мало (выстрел, взрыв, удар), то за это время даже в случае незамкнутой системы внешние силы незначительно изменяют импульсы взаимодействующих тел. Поэтому для практических расчетов в этом случае тоже можно применять закон сохранения импульса.

Экспериментальные исследования взаимодействий различных тел — от планет и звезд до атомов и элементарных частиц — показали, что в любой системе взаимодействующих тел при отсутствии действия со стороны других тел, не входящих в систему или равенстве нулю суммы действующих сил, геометрическая сумма импульсов тел действительно остается неизменной. 

В механике закон сохранения импульса и законы Ньютона связаны между собой. Если на тело массой т в течение времени t действует сила и скорость его движения изменяется от v0 до v, то ускорение движения a тела равно a = (v - v0)/t. На основании второго закона Ньютона для силы F можно записать F = та = m(v - v0)/t, отсюда следует Ft = mv - mv0.

Ft векторная физическая величина, характеризующая действие на тело силы за некоторый промежуток времени и равная произведению силы на время t ее действия, называется импульсом силы.

Единица импульса в СИ — Н • с.

Закон сохранения импульса лежит в основе реактивного движения. Реактивное движение — это такое движение тела, которое возникает после отделения от тела его части.

Пусть тело массой т покоилось. От тела отделилась какая-то его часть т1 со скоростью v1. Тогда

оставшаяся часть придет в движение в противоположную сторону со скоростью v2, масса оставшейся части  т2 Действительно, сумма импульсов обоих частей тела до отделения была равна нулю и после разделения будет равна нулю:

т1v1 +m2v2 = 0, отсюда v1 = -m2v2/m1.

Большая заслуга в развитии теории реактивного движения принадлежит К. Э. Циолковскому.

Он разработал теорию полета тела переменной массы (ракеты) в однородном поле тяготения и рассчитал запасы топлива, необходимые для преодоления силы земного притяжения; основы теории жидкостного реактивного двигателя, а так же элементы его конструкции; теорию многоступенчатых ракет, причем предложил два варианта: параллельный (несколько реактивных двигателей работают одновременно) и последовательный (реактивные двигатели работают друг за другом). К. Э. Циолковский строго научно доказал возможность полета в космос с помощью ракет с жидкостным реактивным двигателем, предложил специальные траектории посадки космических аппаратов на Землю, выдвинул идею создания межпланетных орбитальных станций и подробно рассмотрел условия жизни и жизнеобеспечения на них. Технические идеи Циолковского находят применение при создании современной ракетно-космической техники. Движение с помощью реактивной струи, по закону сохранения импульса, лежит в основе гидрореактивного двигателя. В основе движения многих морских моллюсков (осьминогов, медуз, кальмаров, каракатиц) также лежит реактивный принцип.


 

А также другие работы, которые могут Вас заинтересовать

20361. Однополосная АМПЛИТУДНАЯ МОДУЛЯЦИЯ 54 KB
  Нелинейные искажения сигнала при амплитудной модуляции. Структура ОБП сигнала 20. Усиление ОБП сигнала в двухканалыюм усилителе 20. Формирование ОБП сигнала 20.
20362. ЧАСТОТНАЯ И ФАЗОВАЯ МОДУЛЯЦИЯ 111 KB
  Спектр сигнала при частотной и фазовой модуляции. Основные определения Поскольку мгновенная частота t с фазой t сигнала связана соотношением: 21. При частотной модуляции ЧМ мгновенная частота сигнала изменяется по закону модулирующего сигнала при фазовой ФМ фаза.7 следует что при частоте модулирующего сигнала =const отличить ЧМ от ФМ не представляется возможным.
20363. ЧАСТОТНАЯ И ФАЗОВАЯ МОДУЛЯЦИЯ дискретных сообщений 63.5 KB
  Частотная и фазовая модуляция дискретных сообщений При передаче дискретной в том числе цифровой кодированной информации комбинации двоичных сигналов состоящей из логических 1 и 0 модуляцию называют манипуляцией сигнала а устройство реализующее данный процесс как модулятором так и манипулятором. Три названных способа манипуляции ВЧ сигнала имеют разный уровень помехоустойчивости определяемой как вероятность ошибки принятого символа на выходе приемника от соотношения мощностей полезного сигнала и белого шума на входе демодулятора.1...
20364. ИМПУЛЬСНАЯ МОДУЛЯЦИЯ 116.5 KB
  Излучаемый РПДУ сигнал модулированный последовательностью прямоугольных импульсов показан на рис. Рис. При периодической последовательности прямоугольных импульсов рис.l где Е амплитуда импульса рис.
20365. ОБЩИЕ ПРИНЦИПЫ ГЕНЕРИРОВАНИЯ И УСИЛЕНИЯ ВЧ И СВЧ КОЛЕБАНИЙ 209 KB
  ОБЩИЕ ПРИНЦИПЫ ГЕНЕРИРОВАНИЯ И УСИЛЕНИЯ ВЧ И СВЧ КОЛЕБАНИЙ Классификация и физический механизм работы ВЧ и СВЧ генераторов Генератор на электровакуумном приборе Генератор на биполярном транзисторе Генератор на полевом транзисторе Генератор на диоде Клистронный генератор Генератор на лампе бегущей волны Время взаимодействия носителей заряда с электромагнитным полем Принципы синхронизма и фазировки носителей заряда с электромагнитным полем Мощность взаимодействия носителей заряда с электромагнитным полем 3. В основе работы всех типов...
20366. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ВЧ ГВВ 136 KB
  ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ВЧ ГВВ 10. Согласующие цепи в узкополосных ВЧ транзисторных генераторах 10. Согласующие цепи в широкополосных ВЧ генераторах 10. Обобщенная схема ГВВ Назначение входной цепи состоит в согласовании входного сопротивления транзистора Zвх с источником возбуждения.
20367. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ широкополосных генераторов 63 KB
  Согласующие электрические цепи в широкополосных ВЧ генераторах 11. Согласующие электрические цепи в широкополосных ВЧ генераторах Предельная возможность согласования генератора с нагрузкой в полосе частот. На одной частоте можно произвести оптимальное согласование генератора с нагрузкой при любых параметрах последней выполнив условие 5. при создании широкополосного генератора.
20368. СВЧ ТРАНЗИСТОРНЫЕ ГВВ 97.5 KB
  СВЧ ТРАНЗИСТОРНЫЕ ГВВ 13. СВЧ транзисторный генератор балансного типа 13. Линейный режим работы транзисторного СВЧ генератора 13. Режим перелива мощности в транзисторных СВЧ генераторах 13.
20369. Устройства генерирования и формирования сигналов (УГФС) в системах подвижной радиосвязи (СПРС) 93.5 KB
  Место и функции радиопередающих устройств РпдУ в системах подвижной связи Радиопередающими устройствами более коротко радиопередатчиками называются радиотехнические аппараты служащие для генерирования усиления по мощности и модуляции высокочастотных ВЧ и сверхвысокочастотных СВЧ колебаний подводимых к антенне и излучаемых в пространство. Третья из названных функций модуляция есть процесс наложения исходного сообщения например речи или телевизионного изображения на ВЧ или СВЧ колебания. В зависимости от назначения...