2513

Определение удельного заряда электрона магнетрона

Лабораторная работа

Физика

Непосредственное измерение массы электрона представляет значительные трудности ввиду ее малости. Легче определить удельный заряд электрона, т.е. отношение величины заряда к массе (е / m), а по величине заряда е и удельному заряду можно найти массу m электрона. Для определения е / m могут применяться различные методы. В данной работе применен метод магнетрона.

Русский

2013-01-06

153 KB

29 чел.

Дата Фамилия Группа

Лабораторная работа №34

I.Название работы:

Определение удельного заряда электрона магнетрона.

Цель работы:

Определение удельного заряда электрона методом магнетрона.

II.Краткое теоретическое обоснование:

Непосредственное измерение массы электрона представляет значительные трудности ввиду ее малости. Легче определить удельный заряд электрона, т.е. отношение величины заряда к массе (е / m), а по величине заряда е и удельному заряду можно найти массу m электрона. Для определения е / m могут применяться различные методы. В данной работе применен метод магнетрона.

Магнетрон представляет собой двухэлектродную лампу (диод) с цилиндрическим катодом и коаксиальным с ним цилиндрическим анодом (рис.1). Лампа помелена в однородное магнитное поле, силовые линии индукции  которого направлены параллельно образующим электродов.

Катод нагревается нитью накала и испускает электроны. Если к электродам подключить источник питания - к аноду плюс и к катоду минус, то в промежутке между электродами образуется электрическое поле, силовые линии напряженности которого будут направлены по радиусам от анода к катоду. Таким образом, магнитное и электрическое поля в магнетроне взаимно перпендикулярны.

Если магнитное поле отсутствует, то электроны под действием электрического поля движется прямолинейно по радиусам (рис. 2,а) и в анодной цепи возникает некоторый анодный ток, зависящий от анодного напряжения и тока накала. Если, не меняя анодного напряжения и тока накала, приложить небольшое магнитное поле в направлении, перпендикулярном плоскости чертежа (рис.2,б) то под действием этого поля траектория электронов искривляется, но все электроны, в конечном счете, попадут на анод, и в анодной цепи будет протекать такой же анодный ток, как в отсутствие магнитного поля. По мере увеличения магнитного поля траектории электронов будут все больше искривляться, и при некотором значении , называемом критическим магнитным полемкр, траектории электронов будут касаться анода, и при дальнейшем движении электроны возвратятся на катод (рис.2, в).

Таким образом, при =кр анодный ток резко падает до нуля. При дальнейшем увеличении индукции магнитного полятраектории электронов будут еже больше искривляться (рис.2,г), и, следовательно, анодный ток будет оставаться равным нуле.

Зависимость анодного тока Iа от индукции магнитного поля при постоянном токе накала называется сбросовой характеристикой магнетрона,    вертикальный сброс анодного токе при =кр (рис.2, сплошная линия)      справедлив в предположении, что электроны повидают катод со скоростями   равными нулю. В реальных условиях электроны имеют разброс по тепловым скоростям, поэтому резкой сбросовой характеристики не получается, она имеет вид пунктирной кривой (рис.2).

На электрон движущийся в магнитном поле, действует сила Лоренца

где е − заряд электрона; − скорость электрона; − вектор магнитной индукции; знак минус показывает, что заряд электрона отрицательный. Если магнитное поле однородное ( = const) и скоростьперпендикулярна вектору, то сила Лоренца сообщает электрону постоянное нормальное ускорение, и электрон движется по окружности в плоскости перпендикулярной силовым линиям магнитного поля. Применив второй закон Ньютона, можно найти радиус окружности:

где m − масса электрона.

В магнетроне электроны движутся по более сложным траекториям, так как на них действуют как магнитные, так и электрические поля (рис.3)

В пространстве между катодом и анодом напряженность электрического поля такая же, как в цилиндрическом конденсаторе, следовательно

       (28)

где Ua − разность потенциалов между анодом и катодом ra и rk − радиусы анода и катода; r − расстояние от оси катода до исследуемой точки.

В магнетроне радиус, катода много меньше радиуса анода. При условии

rk << ra из формулы (28) следует, что напряженность поля Е1, максимальная у катода, с увеличением r быстро уменьшается. Поэтому основное изменение скорости электронов происходит вблизи катода, и при дальнейшем движении их скорость будет изменяться незначительно. Приближенно можно считать, что в этом случае электроны движутся в магнитном поле с постоянной по величине скоростью, и, следовательно, их траектории будут близки окружности. Предполагая, что траектория электрона при = кр − окружность, радиус которой R = ra / 2 , и используя (27), получаем:

Магнитное поле работы не совершает (Fл), поэтому кинетическая энергия электрона равна работе электрического поля, следовательно,

Из соотношений (29) и (30) получим:

III.Рабочие формулы и единицы измерения.

Вкр = к • Iкр

IV.Схема установки.

V.Измерительные приборы и принадлежности.

Прибор для определения удельного заряда электрона.

VI.Результаты измерения.

Ua1 = 200 v

N

Ic A

Ia мА

1

29

6

2

30

5

3

30

5

4

29

6

5

29

6

6

40

4

7

29

6

8

50

3

9

29

6

10

29

6

Ua2 = 320 v

N

Ic A

Ia мА

1

29

2,5

2

30

2,6

3

31

2,6

4

32

2,4

5

37

2,4

6

28

3,8

7

48

2,1

8

29

3,8

9

62

1,9

10

81

2,1

VII. Черновые записи и вычисления.

VIII. Основные выводы.

Определили удельный заряд электрона методом магнетрона.

IX. Графики.


 

А также другие работы, которые могут Вас заинтересовать

50704. Определение коэффициента вязкости жидкости 101 KB
  Цель работы: Определить коэффициент вязкости жидкости по истечению его через капилляр. Приборы и принадлежности: установка для измерения коэффициента вязкости жидкости. Ход работы: № Qмл мм с 1 200 160 52 2 200 180 81 3 200 240 355 4 200 150 542 5 200 188 442 Найдём значения и : Находим коэффициент вязкости: Определяем среднюю скорость: Проверка Определим число Рейнольда: Определим...
50706. Определение фокусных расстояний собирающей и рассеивающей линз и основных характеристик оптических систем, составленных из этих линз 70 KB
  Цель работы: Определение фокусных расстояний собирающей и рассеивающей линз и основных характеристик оптических систем составленных из этих линз. Приборы и принадлежности: источник света со щелью в виде стрелки; экран; рейтер и масштабная линейка; набор линз две собирающих и одна рассеивающая; два штатива для установки линз. Ход работы: С помощью метода Бесселя рассчитать фокусные расстояния и оптические силы двух собирающих линз и одной рассеивающей.После этого измеряем расстояние от источника до линзыd1 и...
50707. Изучение распределения Гаусса и двумерного распределения Максвелла на механической модели 113 KB
  Цель работы: изучение законов нормального распределения случайных величин и двумерного распределения Максвелла. Вывод: в данной работе мы получили экспериментальные и теоретические графики распределения случайных величин которые качественным образом показывают распределение скоростей молекул идеального газа.
50708. Определение коэффициента поверхностного натяжения по высоте подъёма жидкости в капиллярных трубках 25 KB
  Тема: Определение коэффициента поверхностного натяжения по высоте подъёма жидкости в капиллярных трубках. Цель работы: определить коэффициента поверхностного натяжения. Вывод: В этой работе мы с помощью четырёх капиллярных трубок нашли два значения коэффициента поверхностного натяжения 1 = 745  178103 Н м и 2 = 644  218103 Н м.
50709. Исследование напряженного состояния тонкостенной цилиндрической оболочки 282 KB
  В таких оболочках действуют кольцевые в первом главном сечении и меридиональные напряжения во втором главном сечении которые могут определиться через внутренние силы и моменты: ; 1 где S меридиональные силы; Т кольцевые силы; толщина стенки; Z координата точки в которой определяем напряжение; Z изменяется от до . Из формулы 1 следует что напряжения распределены по толщине стенки по линейному закону достигая наибольших значений на внутренней или нагруженной поверхностях опор ; 2 В этих формулах если...
50710. ПОКУДОВА ДОБОВИХ ГРАФІКІВ НАВАНТАЖЕННЯ ЗА ДАНИМИ ОБСТЕЖЕННЯ ГРУПИ КОМУНАЛЬНО-ПОБУТОВИХ ЕЛЕКТРОПРИЙМАЧІВ ТА ВИЗНАЧЕННЯ РОЗРАХУНКОВОГО МАКСИМАЛЬНОГО НАВАНТАЖЕННЯ І ОСНОВНИХ ХАРАКТЕРИСТИК ГРАФІКА 191 KB
  Натурний експеримент Мета роботи. Побудова добового графіку навантаження комунально-побутового споживача житлового будинку квартири тощо на основі обстеження його електроприймачів та обчислення розрахункового максимального навантаження і основних числових характеристик графіка. ТЕОРЕТИЧНІ ВІДОМОСТІ Електричне навантаження є основним...
50711. ИССЛЕДОВАНИЕ СЛОЖНОЙ ЦЕПИ ПОСТОЯННОГО ТОКА 126 KB
  Выполнить опытную проверку принципа наложения. Принцип наложения формулируется следующим образом: ток в Кой ветви равен алгебраической сумме токов вызываемых в этой ветви каждой из э. Принцип наложения используется в методе расчета получившем название метода наложения. Опытная проверка принципа наложения производится в следующем порядке: а в цепи собранной при выполнении пункта 1 отключается один из источников э.
50712. Имя существительное как части речи 72.5 KB
  Имя существительное – это самостоятельная часть речи, имеющая категориальное значение предметности и выражающая его в несловоизменительных категориях рода и одушевленности