2515

Определение волны световой волны при помощи дифракции от щели

Лабораторная работа

Физика

Рассмотрим прохождение волны через узкую прямоугольную щель. Согласно принципу Гюйгенса каждая точка фронта волны, достигающей щели, является источником вторичных волн, распространяющихся во все стороны. Поверхность, огибающая эти волны и представляющая фронт прошедшей через щель волны.

Русский

2013-01-06

386 KB

18 чел.

Дата       Фамилия       Группа

 

Лабораторная работа №64

I.Название работы:

Определение волны световой волны при помощи дифракции от щели

Цель работы

Получить дифракционную картину от щели и с её помощью определить длину световой волны

II.Краткое теоретическое обоснование:

Рассмотрим прохождение волны через узкую прямоугольную щель шириной АВ=а (рис.2). Пусть щель освещается пучком параллельных лучей с длиной волны λ. Согласно принципу Гюйгенса каждая точка фронта волны, достигающей щели, является источником вторичных волн, распространяющихся во все стороны. Поверхность, огибающая эти волны и представляющая фронт прошедшей через щель волны (рис.2), заходит в область геометрической тени. Таким образом, при прохождении света через узкую щель имеет место явление дифракции.

Рис.2

Если за щель поставить линзу L (рис.3), то на экране Э фокальной плоскости линзы будет наблюдаться следующая картина. В центре (точка D на рисунке) в направлении падающих лучей будет видна яркая полоса, представляющая собой изображение щели, даваемое линзой по закону прямолинейного распространения света. Но на экране, кроме яркого центрального изображения щели, наблюдается ещё несколько изображений, значительно более слабых и Нерезко очерченных. Эти боковые изображения щели расположены симметрично по обеим сторонам центральной полосы и быстро убывают по яркости. Если на щель падает пучок монохроматических лучей, то на экране чередуются темные и светлые полосы, если же на щель падает пучок белого света, то боковые изображения будут спектрально окрашены. Возникновение боковых изображений щели объясняется дифракционными явлениями.

Рис.3

Для расчета дифракционной картины, получаемой за щелью, воспользуемся методом зон Френеля. Рассмотрим лучи, распространяющиеся за щелью под некоторым углом φ к первоначальному направлению (рис.3).Эти лучи соберутся в фокальной плоскости линзы в точке М. Для подсчета амплитуды колебания в этой точке рядом плоскостей, перпендикулярны пришедшим лучам и отстоят друг от друга на расстоянии λ/2, разделим фронт волны по ширине щели на зоны, называемые зонами Френеля. Эти зоны представляют собой ряд узких полосок одинаковой ширины, параллельных краям щели. Число зон Френеля, которое уложиться на ширине щели:

Точки, одинаково расположенные по отношению к границам зон, называются соответственными. Разность хода волн, выходящих из соответственных точек соседних зон, равна λ/2, т.е. нечетному числу полуволн. Поэтому колебания, приходящие в точку М  от двух соседних зон, будут гасить друг друга [см. уравнение (2)], так как приходят в точку встречи в противоположных фазах. В зависимости от величины угла φ в щели может укладываться четное или нечетное число зон Френеля. Если в щели укладывается четное число зон (z = 1,2,3,…), то действие каждой нечетной зоны подавляется, (гасится) действием соседней четной зоны. Следовательно, в данном направлении φ свет распространяться не будет и в токе М на экране получится темная полоса ( минимум света).

Если в щели укладывается нечетное число зон (z = 2k + 1), то для одной зоны не окажется парной зоны, свет, идущий от нее, не будет погашен, и в точке М будет наблюдаться светлая полоса (максимум света). Итак, темные полосы будут наблюдаться при условии (условие минимума света):

или . (3)

Светлые полосы будут наблюдаться при условии (условие максимума света):

или , (4)

где: к – называется порядком максимума, к = 1,2,3,…

В направлении φ = 0 наблюдается самая яркая полоса (центральный максимум нулевого порядка): в этом направлении колебания от всех зон проходят одинаковые оптические пути и приходят в точку О в одинаковых фазах. Затем, при постепенном изменении угла φ, т.е. при перемещении по экрану, по обе стороны от центральной полосы будут наблюдаться чередующиеся темные и светлые полосы. В направлениях, определяемых условием (4), будут наблюдаться светлые полосы: при к = 1 – максимумы первого порядка, при к = 2 – максимумы второго порядка и т.д. Знак «+» или «-» соответствует расположению полос справа и слева от центрально максимума нулевого порядка.

Распределение интенсивности света J в зависимости от угла φ дано на рис.4 (А – амплитуда колебания, с- коэффициент пропорциональности).

Данную дифракционную картину можно получить без помощи линзы, если экран находится на большом расстоянии l от щели (если выполняется условие , где а – ширина щели, λ – длина световой волны). Расстояние h меңду двумя минимумами одного порядка (рис.5).

При малых углах , а sin φ из условия минимума (3) имеет значение:

.

Тогда искомое расстояние: , откуда: . (5)

Рис.3

В данной работе предлагается изучить явление дифракции света от щели и, используя формулу (5), определить длины волн для различных цветов видимой части спектра.

III.Рабочие формулы и единицы измерения.

IV.Схема установки.

V.Измерительные приборы и принадлежности.

Установка для измерения световой волны

VI.Результаты измерения.

Цвет

светофильтра

п/п

а,

мм

h,

мм

l,

мм

k

λ,

мм

Δλ

Δλср

δλср

Красный

1

0,15

3

25

10

0,88

0,13

0,013

11%

2

0,15

35

35

1

0,73

0,02

3

0,15

4

45

2

0,65

0,1

Зелёный

1

0,15

2

25

10

0,58

0,02

0,05

8%

2

0,15

26

28

1

0,68

0,08

3

0,15

3

40

2

0,64

0,06

VII. Черновые записи и вычисления.

VIII. Основные выводы.

Получили дифракционную картину от щели и с её помощью определили длину световой волны


 

А также другие работы, которые могут Вас заинтересовать

84760. Сети с установлением соединений. Принцип передачи пакетов на основе виртуальных каналов 388.16 KB
  При создании коммутируемого виртуального канала маршрутизация пакетов в узлах сети выполняется с использованием маршрутных таблиц только один раз на этапе установления соединения. При этом каждому виртуальному каналу присваивается идентификатор (номер) виртуального канала...
84761. Глобальная сеть Internet. Краткая история создания и архитектурная концепция Internet 916.28 KB
  Появлению сети Internet и стека протоколов TCP/IP предшествовала в середине 1960-х годов разработка сети, получившей название ARPANET. Разработчики - Стэндфордский исследовательский институт, Калифорнийский университет (Лос-Анжелес), университеты штатов Юта и Калифорния.
84762. Коммуникационный протокол IPv4 640.04 KB
  Длина заголовка 4 бита задает значение длины заголовка пакета измеренной в 32 битовых 4 байтовых словах. Тип сервиса Туре of Service ToS 8 битовое поле предназначенное для оптимизации транспортной службы содержащее: 3 битовое поле Приоритет принимает 8 значений: от 0 нормальный приоритет...
84763. Транспортные протоколы стека TCP/IP 237.33 KB
  Транспортные протоколы ТСР и UDP стека протоколов TCP IP обеспечивают передачу данных между любой парой прикладных процессов выполняющихся в сети и предоставляют интерфейс для протокола IP путем демультиплексирования нескольких процессов использующих в качестве адресов транспортного уровня порты.
84764. Общие принципы организации сетей. Основные понятия и определения 672.2 KB
  Средства вычислительной техники (СВТ) реализуют обработку данных и представляют собой совокупность ЭВМ, вычислительных комплексов и вычислительных систем различных классов. ЭВМ (электронная вычислительная машина, компьютер) совокупность технических средств, предназначенных для организации ввода...
84765. Требования к организации компьютерных сетей 439.39 KB
  Открытость возможность добавления в сеть новых компонентов узлов и каналов связи средств обработки данных без изменения существующих технических и программных средств; 2 гибкость сохранение работоспособности при изменении структуры сети в результате сбоев и отказов отдельных...
84766. Сетевые топологии 697.36 KB
  Следует различать физическую и логическую топологию сети. Физическая структурная топология отображает структурную взаимосвязь узлов сети. Логическая функциональная топология определяется функциональной взаимосвязью узлов сети то есть отображает последовательность передачи данных между узлами сети.
84767. Маршрутизация 495.88 KB
  Маршрутизация одна из основных функций компьютерной сети определяющая эффективность передачи данных. Проблема маршрутизации в компьютерных сетях аналогична проблеме организации автомобильного движения по улицам города и состоит в выборе в каждом узле сети направления передачи данных выходного...
84768. СРЕДСТВА ТЕЛЕКОММУНИКАЦИЙ 599.62 KB
  Для передачи электрических и оптических сигналов применяются электрические ЭЛС и волоконно-оптические ВОЛС линии связи соответственно. Передача электромагнитных сигналов осуществляется через радиолинии РЛС и спутниковые линии связи СЛС.