2517

Определение скорости звука в воздухе методом стоячей волны (или методом резонанса)

Лабораторная работа

Физика

Любая частица среды, выведенная из положения равновесия, под действием упругих сил стремится возвратиться в первоначальное положение и совершает колебания. Вместе с ней начинают колебаться и соседние с ней частицы, затем следующие и т.д. Такое распространение колебательного процесса в среде называется волной.

Русский

2013-01-06

183.89 KB

88 чел.

Дата       Фамилия       Группа

 

Лабораторная работа №48

I.Название работы:

Определение скорости звука в воздухе методом стоячей волны

(или методом резонанса)

Цель работы

Определение скорости звука в воздухе при данной температуре методом стоячей волны и вычисление значения скорости звука при 0o C.

II.Краткое теоретическое обоснование:

Любая частица среды, выведенная из положения равновесия, под действием упругих сил стремится возвратиться в первоначальное положение и совершает колебания. Вместе с ней начинают колебаться и соседние с ней частицы, затем следующие и т.д. Такое распространение колебательного процесса в среде называется волной. Смещение частиц в волне в зависимости от времени колебания и положения частиц описывается уравнением волны, имеющим вид:

 

где S − смещение частиц из положения равновесия; S0 − амплитуда колебаний; ω = 2π / Т − круговая частота; r − расстояние от частицы до источника колебаний; v − скорость распространения волны; Т − период колебаний; λ − длина волны.

Волна, приходящая на границу двух сред, частично приходит через нее, а частично отражается от нее. При отражении от среды менее плотной волна изменяет свое направление на обратное, изменения фазы волны в точке отражения при этом не происходит. При отражении от более плотной среды волна, изменив свое направление на обратное, меняет фазу на π, т.е. на противоположную. При сложении двух волн (падающей и отраженной) получаем стоячую волну.

Уравнение результирующей волны, называемой стоячей, имеет вид:

Множитель определяет амплитуду, которая зависит от координаты r. В определенных точках, называемых пучностями, амплитуда стоячей волны равна сумме амплитуд обоих слагаемых колебаний. В других точках результирующая амплитуда равна нулю, эти точки называются узлами стоячей волны. Координаты точек пучностей и узлов определяется из условий наибольшего и наименьшего значений амплитуды . При =1 положение пучностей определяется условием = ± , (n = 0,1,2…) и соответственно, координаты пучностей равны

При = 0 амплитуда результирующего колебания будет минимальной и . Отсюда координаты узлов равны r = . Расстояние между соседними пучностями определяется разностью двух значений r для двух последовательных значений n: .

Таким образом, расстояние между двумя соседними пучностями равно половине длин тех волн, в результате интерференции, которых образуется данная стоячая волна. Длина стоячей волны равна половине длины бегущей волны и определяется удвоенным расстоянием между двумя соседними узлами.

В стоячей волне все точки между соседними узлами колеблются с одинаковыми фазами. При переходе через узел фаза меняется скачком на 180о, т.е. смещение соседних участков, разделенными узлами, направлены противоположные стороны. Графически результирующая волна имеет вид, представленный на рис.1, где сплошной линией изображена падающая волн, пунктирной − отраженная волна.

На границе отражения волны может образоваться узел или пучность. При отражении волны от среды более плотной на границе образуется узел, а при отражении от среды менее плотной − пучность. В этом случае волна не меняет фазы. Стоячая волна получается при распространении продольных волн в цилиндрической трубе, закрытой с одного конца. Продольной называется волна, колебания частиц которой совпадают с направлением распространения волны. Такие волны реализуются в газах, жидкостях и твердых телах.

При колебаниях частиц, перпендикулярных распространению волны, возникает поперечная волна. Эти волны образуются в твердых телах, образующих упругостью к деформации сдвига.

Возбуждая колебания в одном теле колебаниями другого, можно наблюдать явление резкого возрастания амплитуды колебаний. Такое явление называется резонансом. Резонанс наблюдается, когда частота собственных колебаний совпадает с частотой вынужденных колебаний. Например, воздушный столб, заключенный в цилиндре с водой, можно заставить резонировать на звук камертона. Изменяя уровень воды в цилиндре, добиваются того, что собственный период колебания воздушного волна становится равным периоду колебаний камертона. Такой воздушный столб резонирует на звуки камертона, в нем образуется стоячая волна. Сила звука резко усиливается при резонансе. Расстояние между пучностями любым узлом в стоячей волне определяется так: 

Следовательно, резонанс возникает каждый раз, когда длина воздушного столба равна нечетному числу четвертей длины звуковой волны (рис.2).Обозначив длину резонирующего столба через L, можно написать уравнение L = (2n + 1) λ / 4  (n = 0,1,2,…). Расстояние между последовательными максимумами определяются соотношением

Длина волны

Зная λ и частоту звука ν, можно определить скорость звука в воздухе

Скорость звука зависит от температуры среды и определяется формулой:

где v0 − скорость звука при 0оС; t − температура среды.

III.Рабочие формулы и единицы измерения.

IV.Схема установки.

V.Измерительные приборы и принадлежности.

Приборы, резонирующие на какой − либо звук, называются резонаторами. В данной работе резонатором является прибор (рис.3), состоящей из длинной стеклянной трубки АД и резервуара С укрепленных на стойке, соединенных между собой резиновой трубкой и заполненных водой. Поднимая или опуская резервуар, поднимаются или опускаются уровень воды в трубке АД. Воздушный столб плавно меняет свою высоту, начиная с небольших значений и кончая высотой, равной длине почти всей стеклянной трубки АД В качестве источника колебаний используется звуковой генератор, на котором частота устанавливается по указанию преподавателя (не менее 1000Гц).

VI.Результаты измерения.

Номер опыта

Высота воздушного столбца, L

Расстояние между двумя последовательными максимумами, l

Длина звуковой волны, λ

Скорость звука

при комнатной температуре v

при 0оС v0

1

5

10

20

11000

2

15

10

20

11000

3

25

10

20

11000

4

35

10

20

11000

VII. Черновые записи и вычисления.

l = 15 − 5 = 10                  λ = 2 • 10 = 20                 v = 20 • 550 = 11000

l = 25 − 15 = 10                λ = 2 • 10 = 20                 v = 20 • 550 = 11000

l = 35 − 25 = 10                λ = 2 • 10 = 20                 v = 20 • 550 = 11000

VIII. Основные выводы.

Определили скорость звука в воздухе при данной температуре методом стоячей волны и вычислили значения скорости звука при 0o C.


 

А также другие работы, которые могут Вас заинтересовать

81466. Свойства и распространение гликогена как резервного полисахарида. Биосинтез гликогена. Мобилизация гликогена 173.81 KB
  Биосинтез гликогена. Мобилизация гликогена. Таким образом в молекуле гликогена имеется только одна свободная аномерная ОНгруппа и следовательно только один восстанавливающий редуцирующий конец.
81467. Особенности обмена глюкозы в разных органах и клетках: эритроциты, мозг, мышцы, жировая ткань, печень 110.65 KB
  Метаболизм глюкозы в эритроцитах. В эритроцитах катаболизм глюкозы обеспечивает сохранение структуры и функции гемоглобина целостность мембран и образование энергии для работы ионных насосов. Около 90 поступающей глюкозы используется в анаэробном гликолизе а остальные 10 в пентозофосфатном пути.
81468. Представление о строении и функциях углеводной части гликолипидов и гликопротеинов. Сиаловые кислоты 110.57 KB
  Сиаловые кислоты Гликопротеины сложные белки содержащие помимо простого белка или пептида группу гетероолигосахаридов. К полипептидуприсоединяются гетероолигосахаридные цепи содержащие от 2 до 10 реже 15 мономерных остатков гексоз галактоза и манноза режеглюкоза пентоз ксилоза арабиноза и конечный углевод чаще всего представленный Nацетилгалактозамином Lфукозой или сиаловой кислотой; в отличие от протеогликанов гликопротеины не содержат уроновых кислот и серной кислоты. Сиа́ловые кисло́ты ациальные производные...
81469. Наследственные нарушения обмена моносахаридов и дисахаридов: галактоземия, непереносимость фруктозы и дисахаридов. Гликогенозы и агликогенозы 139.56 KB
  Гликогенозы и агликогенозы Нарушения метаболизма фруктозы Неактивный фермент Блокируемая реакция Локализация фермента Клинические проявления и лабораторные данные Фруктокиназа Фруктоза АТФ → Фруктозе1фосфат АДФ Печень Почки Энтероциты Фруктоземия фруктозурия Фруктозе1фосфатальдолаза Фруктозе1фосфат → Дигидроксиацетон3 фосфат Глицеральдегид Печень Рвота боли в животе диарея гипогликемия Гипофосфатемия фруктоземия гиперурикемия хроническая недостаточность функций печени почек. Наследственная непереносимость...
81470. Важнейшие липиды тканей человека. Резервные липиды (жиры) и липиды мембран (сложные липиды). Жирные кислоты липидов тканей человека 113.78 KB
  Жирные кислоты липидов тканей человека. Жирные кислоты структурные компоненты различных липидов. В составе триацилглицеролов жирные кислоты выполняют функцию депонирования энергии так как их радикалы содержат богатые энергией СН2группы. В составе фосфолипидов и сфинголипидов жирные кислоты образуют внутренний гидрофобный слой мембран определяя его свойства.
81471. Незаменимые факторы питания липидной природы. Эссенциальные жирные кислоты: ω-3- и ω-6-кислоты как предшественники синтеза эйкозаноидов 125.89 KB
  Эссенциальные жирные кислоты: ω3 и ω6кислоты как предшественники синтеза эйкозаноидов. В эту группу входит комплекс полиненасыщенных жирных кислот которые принимают значительное участие в биологических процессах: линолевая кислота омега6 линоленовая кислота омега3 арахидоновая кислота омега6 эйкозапентаеновая кислота омега3 докозагексаеновая кислота омега3 Полиненасыщенные жирные кислоты препятствуют развитию атеросклероза и снижают уровень триглицеридов липопротеидов низкой плотности в крови холестерина и его...
81472. Биосинтез жирных кислот, регуляция метаболизма жирных кислот 192.83 KB
  Источником углерода для синтеза жирных кислот служит ацетилКоА образующийся при распаде глюкозы в абсорбтивном периоде. Образование ацетилКоА и его транспорт в цитозоль. Активный гликолиз и последующее окислительное декарбоксилирование пирувата способствуют увеличению концентрации ацетилКоА в матриксе митохондрий. Так как синтез жирных кислот происходит в цитозоле клеток то ацетилКоА должен быть транспортирован через внутреннюю мембрану митохондрий в цитозоль.
81473. Химизм реакций β-окисления жирных кислот, энергетический итог 170.76 KB
  βОкисление специфический путь катаболизма жирных кислот при котором от карбоксильного конца жирной кислоты последовательно отделяется по 2 атома углерода в виде ацетилКоА. Реакции βокисления и последующего окисления ацетилКоА в ЦТК служат одним из основных источников энергии для синтеза АТФ по механизму окислительного фосфорилирования. связаны макроэргической связью с коферментом А: RCOOH HSKo АТФ → RCO КоА АМФ PPi. Реакцию катализирует фермент ацилКоА синтетаза.
81474. Биосинтез и использование кетоновых тел в качестве источников энергии 127.33 KB
  В результате скорость образования ацетилКоА превышает способность ЦТК окислять его. АцетилКоА накапливается в митохондриях печени и используется для синтеза кетоновых тел. Синтез кетоновых тел начинается с взаимодействия двух молекул ацетилКоА которые под действием фермента тиолазы образуют ацетоацетилКоА. С ацетоацетилКоА взаимодействует третья молекула ацетилКоА образуя 3гидрокси3метилглутарилКоА ГМГКоА.