2519

Способы определение удельного заряда электрона методом магнетрона

Лабораторная работа

Физика

В пределах точности эксперимента электрон – стабильная частица. Характер движения и траектория заряженной частицы зависят не от ее заряда или массы в отдельности. Измеряя скорости и траектории частиц, движущихся в электрических и магнитных полях, можно определить величину и знак удельного заряда.

Русский

2013-01-06

48.15 KB

50 чел.

Белорусский Государственный Университет

Факультет Радиофизики и Электроники

Л А Б О Р А Т О Р Н А Я Р А Б О Т А № 1

Способы определение удельного заряда электрона методом магнетрона

Выполнила студентка

3 курса 8 группы

Максимова П.Д.

МИНСК 2009


Цель работы:
изучить движение электрона в электрическом и магнитном полях и определить удельный заряд электрона.

ТЕОРИЯ МЕТОДА

Электрон – первая из открытых элементарных частиц, носитель отрицательного элементарного заряда е = 1,610-19 Кл (4,810-10 ед. СГСЭ). Электрон самая легкая из всех заряженных частиц. Его масса mе  9,110-28г в 1836 раз меньше массы протона. В пределах точности эксперимента электрон – стабильная частица. Его время жизни, по крайней мере, не менее 21022 лет.

Под действием силы частица с массой m получает ускорение

Характер движения и траектория заряженной частицы зависят не от ее заряда или массы в отдельности, а лишь от отношения e/m. Величина e/m называется удельным зарядом частицы. Измеряя скорости и траектории частиц, движущихся в электрических и магнитных полях, можно определить величину и знак удельного заряда. На этой простой идее основываются многочисленные методы экспериментального определения удельного заряда электрона, в частности, метод магнетрона.

Сущность метода магнетрона заключается в том, что двухэлектродная электронная лампа с цилиндрическими коаксиальными катодом и анодом помещается в магнитное поле, создаваемое, например, соленоидом так, чтобы ось лампы совпадала с направлением магнитного поля. Направление электрического поля в этом случае будет перпендикулярно направлению магнитного поля.

(1)        

Если бы все электроны обладали одинаковыми скоростями, то при достижении критического магнитного поля ток через лампу прекращался бы сразу . Однако, поскольку электроны, эмитируемые катодом, характеризуются некоторым распределением по скоростям, то реальная кривая зависимости анодного тока от индукции магнитного поля (так называемая сбросовая характеристика) выглядит несколько иначе.

ОПИСАНИЕ УСТАНОВКИ

Схема установки для определения удельного заряда электрона представлена на рис. 3.

Электровакуумный диод 1Ц7С помещен внутрь соленоида так, что их оси совпадают. Для питания соленоида L используется регулируемый выпрямитель. Поскольку длина соленоида значительно больше длины анода лампы, то расчет магнитного поля можно проводить по формуле

(9)

где магнитная постоянная, равная 1,26·10–6 Г/м; п – число витков на единицу длины (указано на установке); IC – ток через соленоид, измеряемый амперметром А.

Напряжение на аноде лампы U устанавливается потенциометром R и измеряется вольтметром V, анодный ток IA регистрируется миллиамперметром mA.

Ход работы


Выполняем измерения при значении напряжении
U=90 В.

Ic

Ia

V

0

275

0

0,03

277

5

0,06

279

10

0,09

272

15

0,115

270

20

0,14

265

25

0,17

260

30

0,197

250

35

0,225

200

40

0,255

170

45

0,285

152

50

0,311

142

55

0,342

139

60

0,37

131

65

0,399

125

70

0,425

120

75

0,454

112

80

0,471

109

85

    

Вывод: В пределах точности эксперимента электрон – стабильная частица. Характер движения и траектория заряженной частицы зависят не от ее заряда или массы в отдельности. Измеряя скорости и траектории частиц, движущихся в электрических и магнитных полях, можно определить величину и знак удельного заряда. Выполняя измерения при U=90 В, видим, что критическое значение тока соленоида IС, кр= 0,06, так как максимум при анодном токе равна 279. исходя из формулы с помощью полученных данных определяем удельный заряд электрона.


 

А также другие работы, которые могут Вас заинтересовать

11367. Анализ себестоимости продукции 214.5 KB
  Тема 6. Анализ себестоимости продукции 6.1. Анализ динамики обобщающих показателей и факторов 6.2. Анализ затрат на рубль товарной продукции 6.3. Анализ себестоимости важнейших изделий 6.4. Анализ прямых материальных и трудовых затрат 6.5. Анализ косвенных з...
11368. Анализ прибыли и рентабельности 207 KB
  Тема 7. Анализ прибыли и рентабельности 7.1. Анализ состава и динамики балансовой прибыли 7.2. Анализ финансовых результатов от обычных видов деятельности 7.3. Анализ уровня среднереализационных цен 7.4. Анализ финансовых результатов от прочих видов деятельности 7.5.
11369. Анализ финансового состояния предприятия. Оценка и анализ результативности финансово-хозяйственной деятельности 119.5 KB
  Анализ финансового состояния предприятия. Предварительный обзор экономического и финансового положения предприятия. Оценка и анализ экономического потенциала организации. Оценка имущественного положения. Оценка финансового положения...
11370. АНКСИОЛИТИКИ (ТРАНКВИЛИЗАТОРЫ) 79 KB
  I. ВВЕДЕНИЕ Термин 1810 год. Трр = успокоитель франц. Группа в 1950е мепробамат. Клиническое использование 1960г. бензадиазепины. Применяются при невротических и неврозоподобных систояниях. Анксиолитики от латинского anxietes страх тревожное состояние; Ата...
11371. Средства, возбуждающие ЦНС 114.5 KB
  Средства возбуждающие ЦНС. Введение Лекарственные вещества возбуждающие ЦНС можно разделить на несколько групп: Психостимуляторы Ноо..
11372. Пути проведения боли. Анальгетики 132 KB
  ВВЕДЕНИЕ. Боль играет в организме как положительную так и отрицательную роль. Боль сигнал об опасности; это команда к функциональной перестройке организма от состояния покоя к состоянию активной деятельности направленной на устранение фактора вызывающ
11373. СЕРДЕЧНО - СОСУДИСТАЯ СИСТЕМА 118.5 KB
  ЛЕКЦИЯ Тема.СЕРДЕЧНО СОСУДИСТАЯ СИСТЕМА СанктПетербург Сосуды и сердце мышечные органы. Для сокращения мышц необходимы Са. Са обеспечивает работу сердца суживает сосуды повышает АД. Большинство ССЗ связано с повышенной работой ССС и требуетпо...
11374. АНТИАРИТМИЧЕСКИЕ СРЕДСТВА. Проводящая система сердца (ПС) 97 KB
  АНТИАРИТМИЧЕСКИЕ СРЕДСТВА I Аритмии нарушение ритма сердечных сокращений. Ритмичная активность сердца зависит от работы проводящей системы сердца от биохимических процессов которые происходят в миокарде от кровоснабжения сердца от эфф
11375. АНТИАНГИНАЛЬНЫЕ СРЕДСТВА. Классификация антиангинальных средств 131.5 KB
  АНТИАНГИНАЛЬНЫЕ СРЕДСТВА Антиангинальные средства antianginalia; греч. anti против лат. angina pectoris грудная жаба лекарственные средства применяемые для купирования и предупреждения приступов стенокардии и лечения других проявлений коронарной недоста...