2521

Определение концентрации носителей заряда и подвижности в полупроводниках различного типа

Лабораторная работа

Физика

Измерили концентрацию носителей заряда и подвижности в полупроводниках различного типа. Установка для измерения концентрации и подвижности носителей заряда.

Русский

2013-01-06

208.6 KB

35 чел.

Дата       Фамилия       Группа

 

Лабораторная работа №90

I.Название работы:

Определение концентрации носителей заряда и подвижности в полупроводниках различного типа.

Цель работы

Измерение концентрации носителей заряда и подвижности в полупроводниках различного типа.

II.Краткое теоретическое обоснование:

Измерение концентрации носителей заряда и их знака можно осуществить, используя эффект Холла. Пусть по проводнику или полупроводнику, имеющему вид прямоугольного параллелепипеда, протекает ток I. Проводник помещён во внешнее магнитное поле, вектор магнитной индукции которого B направлен перпендикулярно направлению тока и боковым граням образца (рис.1). Тогда между электродами, касающимися верхних и нижних граней образца и расположенными на одной эквипотенциальной поверхности, возникает разность потенциалов Δφx . Она обусловлена силой Лоренца

Fл = q [vB], действующий на заряд q, движущийся в магнитном поле B со скоростью v. Носитель заряда смещается к верхней грани образца при выбранных направления тока и магнитного поля. Смещение происходит до тех пор, пока сила, действующая со стороны возникающего в результате разделения знаков электрического поля с напряжённостью E, не уравновесит силу Лоренца:

Учитывая, что плотность тока j = nvq, находим

где n – концентрация носителей заряда. С другой стороны, для однородного электрического поля напряжённость E и разность потенциалов Δφ связаны соотношением

откуда

или, учитывая, что I = jab

Величина 1 / qn называется постоянной Холла и обозначается Rx, тогда

В таком виде формула является общей. Более точный расчёт даёт различные значения Rx для металлов и полупроводников. Для металлических проводников

для полупроводников с носителем заряда одного знака

для полупроводников с электронной и дырочной проводимостью

Определив из опытных данных коэффициент Холла Rx, можем вычислить концентрацию носителей заряда в металлах и полупроводниках с носителем заряда одного знака.

Если известно значение Rx и удельная электропроводимость δ = qnμ, то для полупроводников с носителем заряда одного знака нетрудно найти их подвижность

При проведении измерений с помощью эффекта Холла следует учесть, что изменение направления поля или тока ведет к изменению знака разности потенциалов  Δφx. На практике нужно измерение провести дважды с противоположными направлениями поля и тока и взять среднее арифметическое:

Это позволяет исключить всякого рода побочные эффекты, которые сохраняют свой знак при изменении направления поля или тока.

III.Рабочие формулы и единицы измерения.

IV.Схема установки.

V.Измерительные приборы и принадлежности.

• Установка для измерения концентрации и подвижности носителей заряда

VI.Результаты измерения.

Измеряемая величина

Номер измерения

1

2

3

4

5

6

7

8

9

10

U, B

0,7

0,9

1,3

2

2,2

2,6

3,2

3,4

3,8

4,1

I, mA

0,5

0,7

1

1,5

1,7

2

2,5

2,7

3

3,2

Δφx, B

18

23

31

48

52

63

78

81

97

100

VII. Черновые записи и вычисления.

Rx1 = (18 / 0,5) • (0,001 / 0,1) = 0,3600    n1 = 9,42 / 8 • 0,3600 • 2,71 = 1,2069

Rx2 = (23 / 0,7) • (0,001 / 0,1) = 0,3286    n2 = 9,42 / 8 • 0,3286 • 2,71 = 1,3224

Rx3 = (31 / 1)  •  (0,001 / 0,1)  = 0,3100    n3= 9,42 / 8 • 0,3100 • 2,71 = 1,4016

Rx4 = (48 / 1,5) • (0,001 / 0,1) = 0,3200    n4= 9,42 / 8 • 0,3200 • 2,71 = 1,3578

Rx5 = (52 / 1,7) • (0,001 / 0,1) = 0,3059    n5= 9,42 / 8 • 0,3059 • 2,71 = 1,4205

Rx6 = (63 / 2)  •  (0,001 / 0,1)  = 0,3150    n6= 9,42 / 8 • 0,3150 • 2,71 = 1,3794

Rx7 = (78 / 2,5) • (0,001 / 0,1) = 0,3120    n7= 9,42 / 8 • 0,3120 • 2,71 = 1,3926

Rx8 = (81 / 2,7) • (0,001 / 0,1) = 0,3000    n8= 9,42 / 8 • 0,3000 • 2,71 = 1,4483

Rx9 = (97 / 3)  •  (0,001 / 0,1)  = 0,3233    n9= 9,42 / 8 • 0,3233 • 2,71 = 1,3438

Rx10 = (100 / 3,2) • (0,001 / 0,1) = 0,3125   n10= 9,42 / 8 • 0,3125 • 2,71 = 1,3904

β = 630 → r = 0,5   δ = 1 / 0,0017 = 588,24

μ1 = 500 • 0,0036 = 180,00              μ6 = 500 • 0,3150 = 157,50

μ2 = 500 • 0,3286 = 164,29              μ7 = 500 • 0,3120 = 156,00

μ3 = 500 • 0,3100 = 155,00              μ8 = 500 • 0,3000 = 150,00

μ4= 500 • 0,3200 = 160,00               μ9 = 500 • 0,3233 = 161,67

μ5= 500 • 0,3059 = 152,94              μ10 = 500 • 0,3125 = 156,25

VIII. Основные выводы.

Измерили концентрацию носителей заряда и подвижности в полупроводниках различного типа.

IX. Графики


 

А также другие работы, которые могут Вас заинтересовать

73516. Теорема Гамильтона 4.9 MB
  В изолированной системе согласно закону сохранения энергии. Теперь наша задача состоит в том чтобы найти уравнения движения в любой инерциальной системе отсчета т. Система движется по отношению к системе поступательно с некоторой скоростью и некоторым ускорением.
73517. Элементы векторной алгебры 3.85 MB
  Векторное произведение направление есть вывинчивание правого винта от r к p Моментом количества движения частицы материальной точки P относительно некоторой точки называется вектор Рис. Координаты события...
73518. ІСТОРІЯ СТАНОВЛЕННЯ ТЕОРЕТИЧНИХ ПРОБЛЕМ ГЕОГРАФІЇ 160 KB
  Географія як наука пройшла тривалий і складний шлях розвитку. Водночас теорія географії як система наукових понять принципів і методів досліджень має власні закономірності розвитку. Особливого значення для географії набувають міждисциплінарні звязки як з природничими так і з суспільними науками.
73519. ПРОБЛЕМА ВИЗНАЧЕННЯ ОБ’ЄКТУ ТА ПРЕДМЕТУ ГЕОГРАФІЧНОЇ НАУКИ 101.5 KB
  Поняття географічного середовища є основним поняттям географічної науки в цілому тоді як поняття географічної оболонки основним поняттям лише фізичної географії Предметом всієї географії виступає географічне середовище всього суспільства.
73520. ПРОБЛЕМА ВИЗНАЧЕННЯГЕОГРАФІЧНОЇ КАРТИНИ СВІТУ 59.5 KB
  Наукова картина світу як цілісна система уявлень про загальні особливості та закономірності, що виникають у результаті узагальнень і синтезу основних наукових понять і принципів, вміщує теоретичні уявлення і методологічні вимоги, що мають відносну стійкість упродовж тривалого часу
73521. Подсистема анализа в производственном менеджменте 1.11 MB
  Метод цепных подстановок это способ определения влияния различных факторов на обобщающие показатели путем последовательной замены базового значения каждой составляющей показателя согласно формуле расчета обобщающего показателя на анализируемое значение.
73522. Подсистема мотивации в производственном менеджменте 148.5 KB
  Сущность область применения разных форм и систем оплаты труда. Расчет фонда оплаты труда при различных системах оплаты труда. Увеличение производительности труда явившееся результатом использования этого метода мотивации в сочетании с более эффективным применением специализации и стандартизации было впечатляющим. Системы организации заработной платы и стимулирования на предприятиях Предприятия самостоятельно разрабатывают и утверждают формы и системы оплаты труда.
73523. Подсистема принятия решений в производственном менеджменте 122 KB
  Сущность значения и роль принятия решений в производственном менеджменте Менеджером можно назвать человека только тогда когда он принимает организационные решения или реализует их через других людей. Необходимость принятия решения пронизывает все что делает управляющий формулируя цели и добиваясь их достижения. Как способность к коммуникациям так и способность принимать решения это умение развиваемое с опытом. В управлении принятие решения более систематизированный процесс чем в частной жизни.
73524. Управление подготовкой производства. СПУ 394.5 KB
  Разработка расчет и оптимизация сетевых моделей. Управление разработками при помощи СПУ. Понятия событие работа путь сеть и сетевой график. Понятие и расчет полного резерва времени работы.