2527

Расчет цепей постоянного тока

Лабораторная работа

Физика

Повторение методов расчета цепей постоянного тока, ознакомление с компенсационным методом измерения электродвижущей силы (э.д.с.), измерение э.д.с. гальванического элемента.

Русский

2013-01-06

180.38 KB

10 чел.

Дата       Фамилия       Группа

 

Лабораторная работа №23

I.Название работы:

Цель работы

Повторение методов расчета цепей постоянного тока, ознакомление с компенсационным методом измерения электродвижущей силы (э.д.с.),  измерение э.д.с. гальванического элемента.

II.Краткое теоретическое обоснование:

 

Измерение э.д.с. Вольтметром

Простейшая электрическая цепь состоит из источника энергии (с э.д.с. ε и внутренним сопротивлением r) и нагрузки сопротивлением R. Принципиальная электрическая схема этой цепи представлена на рис. 1.

Клеммы 1 и 2 служат для включения в электрическую цепь источника энергии, а клеммы 3 и 4 служат для включения в электрическую цепь нагрузки. Сопротивление соединительных проводов будем считать очень малым и учитывать не будем.

Поэтому φ1 = φ 3, φ2 = φ4

Ток I в цепи определяется следующим уравнением:

I = ε / (r + R)

Напряжение UИCT источника энергии между клеммами 1 и 2, равное напряжению UH нагрузки между клеммами 3 и 4, меньше э.д.с. ε на величину Ir падения напряжения на внутреннем сопротивлении r источника. UИCT = UH = ε Ir.

Если измерять напряжение источника энергии вольтметром с сопротивлением R, то он покажет напряжение Uвольтметра = UH < ε

Вывод: Точно измерить э.д.с. ε вольтметром с сопротивлением R невозможно.   

                                         

Компенсационный метод измерения э.д.с.

При токе через источник энергии I = 0 падение напряжения Ir на внутреннем сопротивлении источника r будет равно нулю. Поэтому, при I=0

ε = UИCT

Для решения этой задачи обеспечения равенства нулю тока I подключим к клеммам 1 и 2 источника энергии вместо сопротивления R измерительный прибор, собранный по схеме рис. 2.

На рис. 2 через Rr обозначено сопротивление гальванометра с нулевой отметкой в центре шкалы. Он предназначен для определения равенства нулю тока I. По схеме рис. 2

I = (φ1 φA) / R

При I = 0 φ1 = φ а. Из той же схемы следует, что φ2 = φв Поэтому при I = 0

φ1 − φ2 = φа − φв

Так как, φ а − φ в = I1R1, а при I = 0 φ1 − φ2 = ε, то

                                 ε = I1 R1                                                         (1)

Из (1) следует, что при I = 0 э.д.с. ε компенсируется напряжением на сопротивлении R1.                                                 

Вывод: При I= 0 (определяется по гальванометру Г) измерение э.д.с. ε можно заменить определением напряжения на сопротивлении R1.

Определение напряжения на сопротивлении R1 при I = 0

Из рис. 2 при I = 0 получим схему измерительного прибора, представленную на рис. 3                              I1 = ε / (R1 + R2  + r1)                (2)

В лабораторной работе измеряется э.д.с. в гальваническом элементе, величина которой не более 1,6 В. Поэтому в качестве источника энергии схемы рис.З. используются три полуторавольтовых батарейки, подключенных последовательно к клеммам с и d. (r1 − сумма внутренних сопротивлений этих батареек, ε1 − их суммарная э.д.с).

С учетом (1) и (2) можно записать

                ε = I1 R1 = ε • (R1 /(R1 + R2 + r1))                      (3)

                                       Так как R1 >(R1 + R2 + r1), то

                                      ε = I1 R1

При ε < ε1 всегда можно подобрать значения сопротивлений R1и R2 так, что I1 R1 = ε в соответствии с уравнением (3). При выполнении этого равенства гальванометр Г покажет отсутствие тока I. Однако, э.д.с. ε1 и внутреннее сопротивление r1 в уравнении (2) нам неизвестны.

Кроме того, они со временем изменяются. Поэтому по найденным значениям R1 и R2 нельзя найти I1 R1  = ε.

Применение нормального элемента

 

Разработаны и широко применяются электрохимические устройства, называемые нормальными элементами. Их э.д.с. εнэ не изменяется со временем и известна. В лабораторной установке используется нормальный элемент с э.д.с. εнэ= 1,012 В.

ВНИМАНИЕ! Нормальные элементы могут включаться только кратковременно, при этом ток, проходящий через них, не должен быть большим. Иначе они станут неработоспособными.

Подключим к клеммам 3 и 4 измерительного прибора схемы рис.2 нормальный элемент вместо гальванического элемента с э.д.с. ε и изменяя сопротивления R1 и R1, добьемся нулевого показания гальванометра Г. Обозначим полученные значения сопротивлений R1 и R2 через R1 НЭ и R2 HЭ. Тогда в соответствии с (3)

εНЭ = ε (R1 НЭ / (R1 НЭ + R2 НЭ + r1 ))

За время измерения ε1 и r1 не изменяются. Примем

         R1 + R2 = R1 НЭ + R2 НЭ.                                (5)

При выполнении условия (5) ток I1 (см. рис. 3) не изменяется при обоих измерениях, т.е. при I = 0.

Разделим уравнение (3) на уравнение (4)

ε / εНЭ = ε1 • (R1 / (R1 + R2 + r1)): ε1 • (R1 НЭ / (R1 НЭ + R2 НЭ + r1 ))

Тогда с учетом (5) получим расчетную формулу для определения э.д.с. ε

ε / εНЭ = R1 / R1 НЭ

ВЫВОД. Значения R1 и R1 НЭ получены экспериментально, э.д.с. εНЭ известна.

Поэтому, по уравнению (6) рассчитывается неизвестная э.д.с ε с высокой точностью.                                             

 

III.Рабочие формулы и единицы измерения.

ε / εНЭ = R1 / R1 НЭ

IV.Схема установки.

 V.Измерительные приборы и принадлежности.

Лабораторная установка содержит:

ГЭ − гальванический элемент, э.д.с. ε которого необходимо измерить.

НЭ − нормальный элемент с э.д.с. εНЭ = 1,102 В.

П − переключатель, включающий в схему гальванический элемент или нормальный элемент.

К1 − тумблер, включающий батарею Б.

К2 − кнопка, включающая измеряемый элемент.

Г − гальванометр с нулевой отметкой в центре шкалы.

М1 − магазин сопротивлений, напряжение на котором компенсирует э.д.с. ε или εНЭ

М2 − магазин сопротивлений, обеспечивающий постоянство тока через магазин М1 при обоих εНЭ

Б − батарея гальванических элементов.

VI.Результаты измерения.

R1, Ом

R2, Ом

R1 + R2 , Ом

8

1

9

R1 НЭ, Ом

R2 НЭ, Ом

R1 НЭ + R2 НЭ , Ом

8

1

9

VII. Черновые записи и вычисления.

ε = 1,102 • (1 / 1) = 1,102

8 + 1 = 8 + 1

9 = 9

VIII. Основные выводы.

Мы повторили метод расчета цепей постоянного тока, ознакомились с компенсационным методом измерения электродвижущей силы (э.д.с.),  измерили э.д.с. гальванического элемента.


 

А также другие работы, которые могут Вас заинтересовать

14308. Измерение скорости звука в твёрдых телах 35 KB
  Отчет по лабораторной работе №9 Тема: Измерение скорости звука в твёрдых телах. Задача Измерить скорость распространения продольной волны сжатия в образце. Измерить скорость распространения сдвиговой волны в образце. Блоксхема экспериментальной уст...
14309. Исследование электрических процессов в переходных цепях. Явления дифференцирования и интегрирования 73.11 KB
  Отчет по лабораторной работе №10в Тема: Исследование электрических процессов в переходных цепях. Явления дифференцирования и интегрирования. Задача Исследовать электрические процессы в переходных цепях. Познакомиться с явлениями дифференцирования и интег
14310. Многократные прямые измерения физический величин и обработка результатов наблюдения 218 KB
  Отчет по лабораторной работе №1.а Тема: Многократные прямые измерения физический величин и обработка результатов наблюдения Задача Освоить методику использования измерительного прибора для многократного прямого измерения физической величины. Выполнить пр
14311. Многократные прямые измерения физических величин и обработка результатов наблюдения 225 KB
  Отчет по лабораторной работе №1.а Тема: Многократные прямые измерения физических величин и обработка результатов наблюдения Задача Освоить методику использования измерительного прибора для многократного прямого измерения физической величины. Выполнить п
14312. Измерение теплопроводности газа 120.5 KB
  Отчет по лабораторной работе №8 Тема: Измерение теплопроводности газа Задача Исследовать температурную зависимость коэффициента теплопроводности воздуха Схема установки Измерения Rобр=1Ом R1=0.1 mm R2=4 mm L1=180 mm L2=30mm Таблица №1 ...
14313. Исследование электрических процессов в переходных цепях. Явления дифференцирования и интегрирования 67.5 KB
  PAGE 1 Отчет по лабораторной работе №10в Тема: Исследование электрических процессов в переходных цепях. Явления дифференцирования и интегрирования. Задача Исследовать электрические процессы в переходных цепях. Познакомиться с явлениями диф
14314. Молекулярна фізика. Термодинаміка 1.32 MB
  Молекулярна фізика. Статистична фізика. Дослідні газові закони. Закони для суміші газів. Внутрішня енергія газу та перший закон термодинаміки. Приклади розвязання задач. Запитання для самоконтролю. Задачі для роботи в аудиторії. Задачі для самостійної роботи. Колові процеси та реальні гази...
14315. Визначення вологості атмосферного повітря 81 KB
  Лабораторна робота №10 Визначення вологості атмосферного повітря Мета роботи: Визначити абсолютну і відносну вологість повітря психрометром Августа. Обладнання: 1 .Психрометр Августа колба з дистильованою водою таблиця тиску насиченої водяної пари при різ
14316. Визначення коефіцієнта поверхневого натягу методом відриву краплі 54.5 KB
  Лабораторна робота №9 Визначення коефіцієнта поверхневого натягу методом відриву краплі Мета роботи : 1. Вивчити явище поверхневого натягу; 2. Визначити коефіцієнт поверхневого натягу рідині. Прилади та обладнання : Скляна бюретка з краном. К