25329

Интеро- и проприорецепция

Доклад

Психология и эзотерика

Все эти рецепторы представляют собой механорецепторы специфическим раздражителем которых является их растяжение. Сухожильные рецепторы оплетают тонкие сухожильные волокна окруженные капсулой. Таким образом в отличие от мышечных веретен сухожильные рецепторы информируют нервные центры о степени напряжения мышц и скорости его развития.

Русский

2013-08-13

30.5 KB

0 чел.

0038 Интеро- и проприорецепция

ФУНКЦИИ ПРОПРИОРЕЦЕПТОРОВ К проприореценторам относятся мышечные веретена, сухожильные органы (или органы Гольджи) и суставные рецепторы (рецепторы суставной консулы и суставных связок). Все эти рецепторы представляют собой механорецепторы, специфическим раздражителем которых является их растяжение.

Мышечные веретена прикрепляются  кмышечным волокнам параллельно—один конец к сухожилию, а другой—к волокну. Каждое веретено покрыто капсулой, образованной несколькими слоями клеток, которая в центральной части расширяется и образует ядерную сумку. Внутри веретена содержится несколько (от 2 до 14) тонких внутриверетенных или так называемых интрафузальных мышечных волокон. Эти волокна в 2-3 раза тоньше обычных волокон скелетных мышц (экстрафузальных).

Интрафузалъные волокна подразделяются на два типа: 1) длинные, толстые, с ядрами в ядерной сумке, которые связанны с наиболее толстыми и быстропроводящими афферентными нервными волокнами — они информируют о динамическом компоненте движения (скорости изменения длины мышцы) и 2) короткие, тонкие, с ядрами, вытянутыми в цепочку, информирующие о статическом компоненте (удерживаемой в данный момент длине мышцы). Окончания афферентных нервных волокон намотаны на интрафузальные волокна рецептора. При растяжении скелетной мышцы происходит растяжение и мышечных рецепторов, которое деформирует окончания нервных волокон и вызывает появление в них нервных импульсов. Частота проприоцептивной импульсации возрастает с увеличением растяжения мышцы, а также при увеличении скорости ее растяжения. Тем самым нервные центры информируются о скорости растяжения мышцы и ее длине. Вследствие малой адаптации импульсация от мышечных веретен продолжается в течение всего периода поддержания растянутого состояния, что обеспечивает постоянную осведомленность центров о длине мышцы. Чем более тонкие и координированные движения осуществляют мышцы, тем больше в них мышечных веретен.

ЦНС может тонко регулировать чувствительность проприорецепторов. Разряды мелких гамма-мотонейронов спинного мозга вызывают сокращение интрафузальных мышечных волокон по обе стороны от ядерной сумки веретена. В результате средняя несократимая часть мышечного веретена растягивается, и деформация отходящего отсюда нервного волокна вызывает повышение его возбудимости. При той же длине скелетной мышцы в нервные центры при этом будет поступать большее число афферентных импульсов. Это позволяет, во-первых, выделять проприоцептивную импульсацию на фоне другой афферентной информации и, во-вторых, увеличивать точность анализа состояния мышц. Повышение чувствительности веретен происходит во время движения и даже в предстартовом состоянии. Это объясняется тем, что в силу низкой возбудимости гамма-мотонейронов их активность в состоянии покоя выражена слабо, а при произвольных движениях и вестибулярных реакциях она активируется. Чувствительность пропрнорецепторов повышается также при умеренных раздражениях симпатических волокон и выделении небольших доз адреналина. Сухожильные органы расположены в месте перехода мышечных волокон в сухожилия. Сухожильные рецепторы оплетают тонкие сухожильные волокна, окруженные капсулой. В результате последовательного крепления сухожильных органов к мышечным волокнам (а в ряде случаев — к мышечным веретенам), растяжение сухожильных механорецепторов происходит при напряжении мышц. Таким образом, в отличие от мышечных веретен, сухожильные рецепторы информируют нервные центры о степени напряжения мышц и скорости его развития.

Суставные рецепторы информируют о положении отдельных частей тела в пространстве и относительно друг друга. Эти рецепторы представляют собой свободные нервные окончания или окончания, заключенные в специальную капсулу. Одни суставные рецепторы посылают информацию о величине суставного угла, т. е. о положении сустава. Их импульсация продолжается в течение всего периода сохранения данного угла. Она тем большей частоты, чем больше сдвиг угла. Другие суставные рецепторы возбуждаются только в момент движения в суставе, т. е. посылают информацию о скорости движения. Частота их импульсации возрастает с увеличением скорости изменения суставного угла.

Сигналы, идущие от рецепторов мышечных веретен, сухожильных органов, суставных сумок и тактильных рецепторов кожи, называют кинестетическими, т. е. информирующими о движении тела. Их участие в произвольной регуляции движений различно. Сигналы от суставных рецепторов вызывают заметную реакцию в коре больших полушарий и хорошо осознаются. Благодаря им человек лучше воспринимает различия при движениях в суставах, чем различия в степени напряжения мышц при статических положениях или поддержании веса. Сигналы же от других проприорецепторов, поступающие преимущественно в мозжечок, обеспечивают бессознательную регуляцию, подсознательный контроль движений и поз.

ВИСЦЕРОЦЕПТИВНАЯ (ИНТЕРОРЕЦЕПТИВНАЯ) СЕНСОРНАЯ СИСТЕМА

Во внутренних органах имеется множество рецепторов, воспринимающих давление — барорецепторы сосудов, кишечного тракта и др., изменения химизма внутренней среды—хеморецепторы, ее температуры —терморецепторы, осмотического давления, болевые раздражения. С их помощью безусловнорефлекторным путем регулируется постоянство различных констант внутренней среды (поддержание гомеостаза), ЦНС информируется об изменениях во внутренних органах. Информация от интерорецепторов через блуждающии, чревныйи тазовый нервы поступает в промежуточный мозг и далее в лобные и другие области коры головного мозга. Деятельность этой системы практически не осознается, она мало локализована, однако при сильных раздражениях она хорошо ощущается. Она участвует в формировании сложных ощущений—жажды, голода и др.


 

А также другие работы, которые могут Вас заинтересовать

44973. Дискретные системы управления. Классификация 795 KB
  Для импульсных систем в основном применяют 3 вида квантования сигнала по времени: амплитудноимпульсная модуляция амплитуда импульса  входному сигналу Широтноимпульсная модуляция широта импульса  входному сигналу Фазоимпульсная модуляция фаза импульса  входному сигналу Во всех случаях период чередования импульсов является постоянным В случае амплитудноимпульсной модуляции рис б длительность каждого импульса постоянна имеет одинаковое значение и обозначается Т 0  1. Амплитуда импульсов принимает значения x[nT]  =...
44974. Импульсные системы управления 820 KB
  Импульсные системы управления. и решетчатой функции определенную длительность Импульсные системы описываются разностными уравнениями: Δf[n] =f[n1] f[n] первая разность решетчатой функции. Передаточная функция разомкнутой цепи импульсной системы это отношение выходной величины к входной при нулевых начальных условиях. X1 = sinωt X2 = sin2ωt t=nT АФЧХ разомкнутой импульсной системы определяется аналогично обыкновенной линейной системе: WS→Wjω gt=sinωt Q=ST g[n]=sinώn...
44975. Нелинейные системы управления. Второй метод Ляпунова 266.5 KB
  Нелинейные системы управления. Нелинейность обусловлена нелинейностью статической характеристики одного из элементов системы. движением Ляпунов понимал любой интересующий нас в отношении устойчивости режим работы системы. Линейная система получается в результате линеаризации НЛ системы.
44976. Автоколебания нелинейных САУ. Определение параметров автоколебаний 420 KB
  эти параметры могут быть найдены если известны условия при которых система находится на границе устойчивости. Для определения границы устойчивости можно использовать существующие критерии устойчивости для линейных САУ. Критерий Найквиста: Если разомкнутая цепь системы устойчива то для устойчивости замкнутой системы н. Необходимым условием устойчивости явл.
44977. Методы линеаризации нелинейных САУ 1.05 MB
  Методы линеаризации нелинейных САУ. НСдинамика кх описывается нелинми диф урми это сисмы имеющие нелинейную стстю харку. Нелинейность обусловлена нелинейностью статической характеристики одного из элементов системы. Методы линеаризации нелинейных САУ.
44978. Случайные процессы 269.5 KB
  В ряде систем для изучения отдельных звеньев системы применяется специальный ввод в систему случайных воздействий. Среднее значение mft и myt являются не случайными значениями и они связаны между собой через передаточную функцию системы. Ry = M[ytyt] Чтобы получить искомое выражение для искомой функции выходные величины по искомой функции входные воздействия воспользуемся связью между входной и выходной величиной системы через её весовую функцию. Эту связь можно выразить через передаточную функцию системы.
44979. Оптимальное управление. Постановка задачи оптимального управления. Критерии оптимальности 269 KB
  Постановка задачи оптимального управления. К настоящему времени наибольшее развитие получили 2 направления в теории оптимальности систем: 1 Теория оптимального управления движением систем с полной информацией об объекте и возмущениях; Теории оптимального управления при случайных возмущениях. Для реализации оптимального управления необходимо: Определить цель управления. Изучить все состояния среды функционирования объекта влияющие на прошлое настоящее и будущее процесса управления.
44980. Аналитическое конструирование регуляторов. Постановка задачи 224 KB
  При исследовании качества переходных в линейных САУ вводились разлитые интегральные критерии качества с помощью которых оценивался переходной процесс на бесконечном интервале времени. При рассмотрении интегральных критериев качества мы убедились в том что эти критерии позволяют определить параметры регулятора если задана его структура. Можно поставить более общую задачу: найти закон регулирования аналитическую функцию связывающую управляющую координату и управляющее воздействие при этом доставляющее min интегральному критерию качества.
44981. Методы теории оптимального управления 26 KB
  Методы теории оптимального управления В тех=их задачах на управление накладывается ограничения по энергетическим ресурсам и ограничения на фазовые координаты из соображения прочности и безопасности. Можно выделить 4 основных метода вариц. Исчисления кые испся для решения задач оптимального управления: Применение урия Эйлера Принцип максимума Динамическое программирование Нелинейное программирование Прямой вариционный метод. Основное применение метода испго урие Эйлера это задачи где экстремалями явлся гладкие фии а...