2533

Изучение процессов зарядки и разрядки конденсатора

Лабораторная работа

Физика

Изучить теорию зарядки и разрядки конденсатора, экспериментально получить зависимость напряжения на конденсаторе от времени при его зарядке и разрядке.

Русский

2013-01-06

125.98 KB

136 чел.

Дата       Фамилия      Группа

 

Лабораторная работа №26

I.Название работы:

Изучение процессов зарядки и разрядки конденсатора.  

Цель работы:

Изучить теорию зарядки и разрядки конденсатора, экспериментально получить зависимость напряжения на конденсаторе от времени при его зарядке и разрядке.

II.Краткое теоретическое обоснование:

Возникновение переходных процессов

В электрических цепях могут происходить включения или выключения пассивных (не содержащих источники энергии) или активных (содержащих источники энергии) ветвей, кроткие замыкания отдельных участков, различного рода переключения, внезапные изменения параметров и т. д. В результате таких изменении, называемых часто коммутационными или просто коммутациями, которые будем считать происходящими мгновенно, в цепи возникают переходные процессы, заканчивающиеся спустя некоторое (теоретически бесконечно большое) время после коммутации.

Законы коммутации

1.В любой ветви с индуктивностью ток и магнитный поток в момент коммутации сохраняют те значения, которые они имели до коммутации, и дальше начинают изменяться именно с этих значений.

2. В любой ветви напряжение и заряд на емкости сохраняют в момент коммутации те значения, которые они имели до коммутации, и в дальнейшим изменяются, начиная именно этих значении.

В дальнейшим мы будем изучать только изменение напряжения на конденсаторе при коротком замыкании цепи RC (ветви, имеющей последовательное соединение сопротивления R емкости С) и включении этой цепи RC  на постоянное напряжение, т.е. процессы разрядки и зарядки конденсатора.

Разрядка конденсатора

Зарядим разряженный конденсатор емкостью С путем перевода переключателя П в положение 1 (см рис. 11.1) до некоторого напряжения Uco

 Uc= Uco                                                                                                                                               (11.1)

В частности, при бесконечно большом времени зарядки   t  Uco

Затем переключатель П мгновенно перевести в положение 2, и конденсатор разряжается через сопротивление R. Введем следующие обозначения:

Uc мгновенное значение напряжения на конденсаторе;

Uco напряжение на конденсаторе при начале разрядки;                   

UR –мгновенное значение напряжения на сопротивлении; 

i  мгновенное значение тока в цепи;

q – заряд на обкладке конденсатора. 

                                UR = Ri = R • (dq/dt),       UC = (1/C)q                 (11.2)

Напомним второй закон Кирхгофа: в любом контуре алгебраическая сумма эдс равна алгебраической сумме напряжений на сопротивлениях, входящих в этот контур. Поэтому можно записать

                                 UR + UC = 0 ,                                 (11.3)

Из уравнений (11.2) и (11.3) получим                 

R (dq/dt) + (1/C)q=0

Преобразуем это уравнение к следующему виду

                                               (dq/dt)+ (1/RC)q=0                            (11.4)

Уравнение (11.4) представляет собой линейное однородное дифференциальное уравнение 1-го порядка. Его легко проинтегрировать, разделив переменные, т.е. записав в виде

dq/q = – (1/RC) dt

откуда следует

∫ (1 / q) dq = – ∫ (1/RC) dt

Взяв интегралы, получим

lg q = – (t/RC) + ln const

(имея в виду дальнейшие преобразования, мы постоянную интегрирования написали в виде ln const).                                                                         

Потенцирование этого соотношения дает

(q / const) = e – (t / RC)

отсюда                                           q = const e – (t / RC)                        (11.5)

Выражение (11.5) является общим решением уравнения (11.4). Значение const найдем из начальных условий. При t = 0 из (11.1) и (11.2) получим

q = UcoC

После подстановки полученного выражения в уравнение (11.5) получим:

UcoC = const e – (0 / RC) = const 1               

Поэтому уравнение (11.5) может быть представлено в следующем виде:

q = UcoC • C • e – (t / RC)

Разделив левую и правую части этого уравнения на С с учетом (11.2) можно записать

UC  = Uco   e – (t / RC)

Из (11.6) следует, что при коротком замыкании цепи R, С напряжение на конденсаторе убывает по экспоненциальному закону от Uco при t = 0 от 0 при     t=∞. Теоретически UC будет всегда больше нуля, т. к. t всегда конечная величина.

Зарядка конденсатора.

При полной разрядке конденсатора (при нулевом показании вольтметра, измеряющего напряжение на конденсаторе) мгновенно переключим переключатель П в положение 1 (см. рис.11.1)

По второму закону Кирхгофа можно записать:                        

                                   UR + UC = ε                                  (11.7)

(11.7) получим:

R (dq / dt) + (1 / C)q = ε

преобразуем это уравнение к следующему виду:

                         (dq / dt) + (1 / RC) q =  ε / R                    (11.8)

    Уравнение    (11.8)    представляет    собой    линейное    неоднородное    дифференциальное уравнение 1-го порядка. Как известно из теории дифференциальных уравнений, общее решение линейного неоднородного дифференциального уравнения можно получить, прибавив любое его частное решение к общему решению соответствующего однородного уравнения.         Уравнение   (11.5)   дает   общее   решение   однородного   уравнения.    Частное   решение получим  из условия,   что   конденсатор заряжается до напряжения  UС = ε при бесконечно большом времени зарядки t. Поэтому

                                    qчастн = ε C                                       (11.9)

Сложив (11.5) и (11.9), получим

                                 q = ε C + const e – (t / RC)                    (11.10)                   

Найдем const из начального условия при t = 0, UC = 0, q = 0.

0 = ε  Cε C  e – (t / RC)

const = ε  C

Тогда из (11.10) будем иметь:

q = ε  Cε C  e – (t / RC)

Разделив это уравнение на С, с учетом (11.2), запишем:

                               UС = ε (1 – e – (t / RC))                                (11.11)

Из уравнений (11.6) и (11.11) следует, что напряжение на емкости изменяется по экспоненциальному закону. Напряжение уменьшается или возрастает тем медленнее, чем больше произведение RС. Поэтому произведение RС называют постоянной времени и обозначают буквой  τ (тау).

                                            τ = RС                                   (11.12)

Найдем физический смысл постоянной времени τ. В соответствии с (11.6)

(UC / UC (t + τ)) = (UCO  e – (t / RC)) / (UCO  e – (t+τ ) / (RC)) = e  (τ / RC) = e  (RC / RC) = e

UC  (t + τ) = UC (t) / e

Следовательно, τ – это время, за которое напряжение на конденсаторе уменьшится в е раз.

Постоянную времени τ называют также временем релаксации (от латинского «relaxatio» – ослабление, уменьшение напряжения).

Найдем уравнение касательной к экспоненте (11.6) с учетом (11.12).  

dUC / dt = UCO  e – (t / τ) (– (l / τ)) = – UC / τ = tg α

Экспонента (.11.6) и касательная к ней в момент t показаны на рис. 11.2.

Из  рис. 11.2 следует, что τ – это время, за которое напряжение на конденсаторе достигло бы установившегося значения UC=0, если с момента t скорость изменения напряжения на конденсаторе не изменялась бы.   

III.Рабочие формулы и единицы измерения.

τ = RС                     UR + UC = ε

IV.Схема установки.

V.Измерительные приборы и принадлежности.

  1.  Конденсатор
  2.  Секундомер
  3.  Элемент питания

VI.Результаты измерения.

Изменение напряжения Uc, B

Время изменения напряжения t ,c

Среднее время tср, с

      от                  до

1-ый опыт     2-ой опыт

       0                  0,1             

      4,45                5,3

4,875

       0                  0,2

       9,6                10,4

10

       0                  0,3

       16                 16,6

16,3

       0                  0,4

      24,6               25,7

25,15

       0                  0,5

      36,1               37,3

36,7

       0                  0,6

        52                53,2

52,6

Изменение напряжения Uc, B

Время изменения напряжения t ,c

Среднее время tср, с

      от                  до

1-ый опыт     2-ой опыт

       0,7                  0,6             

      2,9                  2,6   

2,75

       0,7                  0,5

      5,5                  5,2

5,35

       0,7                  0,4

      8,9                  8,7

8,8

       0,7                  0,3

     14,1                13,4

13,75

       0,7                  0,2

       27                 21,1

24,05

VII. Черновые записи и вычисления.

tср = (9,6 + 10,4) / 2 =10                                        tср = (2,9 + 2,6) / 2 = 2,75

tср = (16 + 16,6) / 2 =16,3                                      tср = (5,5 + 5,2) / 2 = 5,35

tср = (24,6 + 25,7) / 2 =25,15                                 tср = (8,9 + 8,7) / 2= 8,8

tср = (36,1 + 37,3) / 2 =36,7                                   tср = (14,1 + 13,4) / 2 = 13,75

tср = (52 + 53,2) / 2 =52,6                                      tср = (27 + 21,1) / 2 = 24,05

VIII. Основные выводы.

Мы изучили теорию зарядки и разрядки конденсатора, экспериментально получили зависимость напряжения на конденсаторе от времени при его зарядке и разрядке.

IX. Графики.


 

А также другие работы, которые могут Вас заинтересовать

1895. Логическое и временное моделирование схем. Методы параллельного и событийного моделирования. Понятие риска, классификация и методы его обнаружения 21.62 KB
  Моделирование КС заключается в том, что по функциональной схеме и входному набору (заданным значениям сигналов на всех входных полюсах схемы) вычисляются значения сигналов на выходах всех элементов схемы (внутренних и выходных).
1896. Неисправности в комбинационных схемах. Модель константных неисправностей. Особенности проявления неисправностей в схемах из элементов И-НЕ 24.47 KB
  Проверяющий и диагностирующий тесты. Процедура построения диагностирующего теста. Особенности проявления неисправностей в схемах из элементов И-НЕ. Процедура построения двухуровневого диагностирующего теста.
1897. МЭО и ВТО 748.34 KB
  Мировая торговля товарами и услугами. Международное движение капитала. Международные валютные расчеты. Система учета международных операций в форме платежного баланса. Национальная политика в области внешней торговли. ВТО в мировой экономической системе.
1898. Lessons In Electric Circuits, Volume V Reference 611.21 KB
  DC circuit equations and laws. Capacitor sizing equation. Series and parallel component equivalent values. Value of time constant in series RC and RL circuits. Calculating time at specied voltage or current.
1899. Гігієнічна оцінка умов, режимів та організації навчально-виховного процесу за різних педагогічних технологій 497.39 KB
  Дана гігігєнічна оцінка умов, режимів та організації навчально виховного процессу при різних педагогічних технологіях (семестрово-циклоблочної порівняно з традицією).
1900. Человек в организации. Функция мотивации. 901.18 KB
  Человек и организационное окружение. Структура и характеристики организационной культуры. Общая характеристика мотивации. Практические аспекты развития мотивации сотрудников.
1901. Жизненный цикл и позиционирование товара. Продуктовый портфель 1.12 MB
  Товар: концепция, форма, характеристики. Товарная политика – ядро маркетинговой стратегии. Форма представления товара и его характеристики. Подходы к определению базовых и дополнительных услуг. Взаимодействие между жизненными циклами товара и рынка. Критика и достоинства концепции жизненного цикла товара. Исключение малорентабельных новых товаров.
1902. Поиск клиента. Управление взаимоотношениями с потребителем 1.33 MB
  Тенденции сегодняшнего дня и будущее. Ошибки формирования каналов продаж. Методика выделения целевых сегментов по продукту. Анализ целевого рынка – методика отбора целевых сегментов по регионам. Пример выделения потребительских характеристик и формирования коммерческого предложения. Характеристики рынка товаров промышленного назначения.
1903. Вексельное обращение и тенденции егоразвития 1.23 MB
  Генезис мирового вексельного обращения. Современная экономическая теория вексельного обращения. Роль корпоративных векселей в преодолении платежного кризиса. Перспективные направления работы с корпоративными векселями.