2533

Изучение процессов зарядки и разрядки конденсатора

Лабораторная работа

Физика

Изучить теорию зарядки и разрядки конденсатора, экспериментально получить зависимость напряжения на конденсаторе от времени при его зарядке и разрядке.

Русский

2013-01-06

125.98 KB

147 чел.

Дата       Фамилия      Группа

 

Лабораторная работа №26

I.Название работы:

Изучение процессов зарядки и разрядки конденсатора.  

Цель работы:

Изучить теорию зарядки и разрядки конденсатора, экспериментально получить зависимость напряжения на конденсаторе от времени при его зарядке и разрядке.

II.Краткое теоретическое обоснование:

Возникновение переходных процессов

В электрических цепях могут происходить включения или выключения пассивных (не содержащих источники энергии) или активных (содержащих источники энергии) ветвей, кроткие замыкания отдельных участков, различного рода переключения, внезапные изменения параметров и т. д. В результате таких изменении, называемых часто коммутационными или просто коммутациями, которые будем считать происходящими мгновенно, в цепи возникают переходные процессы, заканчивающиеся спустя некоторое (теоретически бесконечно большое) время после коммутации.

Законы коммутации

1.В любой ветви с индуктивностью ток и магнитный поток в момент коммутации сохраняют те значения, которые они имели до коммутации, и дальше начинают изменяться именно с этих значений.

2. В любой ветви напряжение и заряд на емкости сохраняют в момент коммутации те значения, которые они имели до коммутации, и в дальнейшим изменяются, начиная именно этих значении.

В дальнейшим мы будем изучать только изменение напряжения на конденсаторе при коротком замыкании цепи RC (ветви, имеющей последовательное соединение сопротивления R емкости С) и включении этой цепи RC  на постоянное напряжение, т.е. процессы разрядки и зарядки конденсатора.

Разрядка конденсатора

Зарядим разряженный конденсатор емкостью С путем перевода переключателя П в положение 1 (см рис. 11.1) до некоторого напряжения Uco

 Uc= Uco                                                                                                                                               (11.1)

В частности, при бесконечно большом времени зарядки   t  Uco

Затем переключатель П мгновенно перевести в положение 2, и конденсатор разряжается через сопротивление R. Введем следующие обозначения:

Uc мгновенное значение напряжения на конденсаторе;

Uco напряжение на конденсаторе при начале разрядки;                   

UR –мгновенное значение напряжения на сопротивлении; 

i  мгновенное значение тока в цепи;

q – заряд на обкладке конденсатора. 

                                UR = Ri = R • (dq/dt),       UC = (1/C)q                 (11.2)

Напомним второй закон Кирхгофа: в любом контуре алгебраическая сумма эдс равна алгебраической сумме напряжений на сопротивлениях, входящих в этот контур. Поэтому можно записать

                                 UR + UC = 0 ,                                 (11.3)

Из уравнений (11.2) и (11.3) получим                 

R (dq/dt) + (1/C)q=0

Преобразуем это уравнение к следующему виду

                                               (dq/dt)+ (1/RC)q=0                            (11.4)

Уравнение (11.4) представляет собой линейное однородное дифференциальное уравнение 1-го порядка. Его легко проинтегрировать, разделив переменные, т.е. записав в виде

dq/q = – (1/RC) dt

откуда следует

∫ (1 / q) dq = – ∫ (1/RC) dt

Взяв интегралы, получим

lg q = – (t/RC) + ln const

(имея в виду дальнейшие преобразования, мы постоянную интегрирования написали в виде ln const).                                                                         

Потенцирование этого соотношения дает

(q / const) = e – (t / RC)

отсюда                                           q = const e – (t / RC)                        (11.5)

Выражение (11.5) является общим решением уравнения (11.4). Значение const найдем из начальных условий. При t = 0 из (11.1) и (11.2) получим

q = UcoC

После подстановки полученного выражения в уравнение (11.5) получим:

UcoC = const e – (0 / RC) = const 1               

Поэтому уравнение (11.5) может быть представлено в следующем виде:

q = UcoC • C • e – (t / RC)

Разделив левую и правую части этого уравнения на С с учетом (11.2) можно записать

UC  = Uco   e – (t / RC)

Из (11.6) следует, что при коротком замыкании цепи R, С напряжение на конденсаторе убывает по экспоненциальному закону от Uco при t = 0 от 0 при     t=∞. Теоретически UC будет всегда больше нуля, т. к. t всегда конечная величина.

Зарядка конденсатора.

При полной разрядке конденсатора (при нулевом показании вольтметра, измеряющего напряжение на конденсаторе) мгновенно переключим переключатель П в положение 1 (см. рис.11.1)

По второму закону Кирхгофа можно записать:                        

                                   UR + UC = ε                                  (11.7)

(11.7) получим:

R (dq / dt) + (1 / C)q = ε

преобразуем это уравнение к следующему виду:

                         (dq / dt) + (1 / RC) q =  ε / R                    (11.8)

    Уравнение    (11.8)    представляет    собой    линейное    неоднородное    дифференциальное уравнение 1-го порядка. Как известно из теории дифференциальных уравнений, общее решение линейного неоднородного дифференциального уравнения можно получить, прибавив любое его частное решение к общему решению соответствующего однородного уравнения.         Уравнение   (11.5)   дает   общее   решение   однородного   уравнения.    Частное   решение получим  из условия,   что   конденсатор заряжается до напряжения  UС = ε при бесконечно большом времени зарядки t. Поэтому

                                    qчастн = ε C                                       (11.9)

Сложив (11.5) и (11.9), получим

                                 q = ε C + const e – (t / RC)                    (11.10)                   

Найдем const из начального условия при t = 0, UC = 0, q = 0.

0 = ε  Cε C  e – (t / RC)

const = ε  C

Тогда из (11.10) будем иметь:

q = ε  Cε C  e – (t / RC)

Разделив это уравнение на С, с учетом (11.2), запишем:

                               UС = ε (1 – e – (t / RC))                                (11.11)

Из уравнений (11.6) и (11.11) следует, что напряжение на емкости изменяется по экспоненциальному закону. Напряжение уменьшается или возрастает тем медленнее, чем больше произведение RС. Поэтому произведение RС называют постоянной времени и обозначают буквой  τ (тау).

                                            τ = RС                                   (11.12)

Найдем физический смысл постоянной времени τ. В соответствии с (11.6)

(UC / UC (t + τ)) = (UCO  e – (t / RC)) / (UCO  e – (t+τ ) / (RC)) = e  (τ / RC) = e  (RC / RC) = e

UC  (t + τ) = UC (t) / e

Следовательно, τ – это время, за которое напряжение на конденсаторе уменьшится в е раз.

Постоянную времени τ называют также временем релаксации (от латинского «relaxatio» – ослабление, уменьшение напряжения).

Найдем уравнение касательной к экспоненте (11.6) с учетом (11.12).  

dUC / dt = UCO  e – (t / τ) (– (l / τ)) = – UC / τ = tg α

Экспонента (.11.6) и касательная к ней в момент t показаны на рис. 11.2.

Из  рис. 11.2 следует, что τ – это время, за которое напряжение на конденсаторе достигло бы установившегося значения UC=0, если с момента t скорость изменения напряжения на конденсаторе не изменялась бы.   

III.Рабочие формулы и единицы измерения.

τ = RС                     UR + UC = ε

IV.Схема установки.

V.Измерительные приборы и принадлежности.

  1.  Конденсатор
  2.  Секундомер
  3.  Элемент питания

VI.Результаты измерения.

Изменение напряжения Uc, B

Время изменения напряжения t ,c

Среднее время tср, с

      от                  до

1-ый опыт     2-ой опыт

       0                  0,1             

      4,45                5,3

4,875

       0                  0,2

       9,6                10,4

10

       0                  0,3

       16                 16,6

16,3

       0                  0,4

      24,6               25,7

25,15

       0                  0,5

      36,1               37,3

36,7

       0                  0,6

        52                53,2

52,6

Изменение напряжения Uc, B

Время изменения напряжения t ,c

Среднее время tср, с

      от                  до

1-ый опыт     2-ой опыт

       0,7                  0,6             

      2,9                  2,6   

2,75

       0,7                  0,5

      5,5                  5,2

5,35

       0,7                  0,4

      8,9                  8,7

8,8

       0,7                  0,3

     14,1                13,4

13,75

       0,7                  0,2

       27                 21,1

24,05

VII. Черновые записи и вычисления.

tср = (9,6 + 10,4) / 2 =10                                        tср = (2,9 + 2,6) / 2 = 2,75

tср = (16 + 16,6) / 2 =16,3                                      tср = (5,5 + 5,2) / 2 = 5,35

tср = (24,6 + 25,7) / 2 =25,15                                 tср = (8,9 + 8,7) / 2= 8,8

tср = (36,1 + 37,3) / 2 =36,7                                   tср = (14,1 + 13,4) / 2 = 13,75

tср = (52 + 53,2) / 2 =52,6                                      tср = (27 + 21,1) / 2 = 24,05

VIII. Основные выводы.

Мы изучили теорию зарядки и разрядки конденсатора, экспериментально получили зависимость напряжения на конденсаторе от времени при его зарядке и разрядке.

IX. Графики.


 

А также другие работы, которые могут Вас заинтересовать

24403. Нормативная этика 29 KB
  Все моральные учения и этические теории выдвигавшиеся в истории в конечном итоге были посвящены решению практических нравственных проблем. И каждый теоретик посвоему обосновывал моральные представления того обва и класса духовным выразителем интересов крого он выступал хотя субъективно стремился к созданию беспристрастной теории возвышающейся над различными моральными позициями. края содержит моральные оценки и предписания но не может быть научной и метаэтику края является якобы строго научной теорией очищенной от моральных...
24404. Деловое общение 42 KB
  Дейл Карнеги еще в 30е годы заметил что успехи того или иного человека в его финансовых делах даже в технической сфере или инженерном деле процентов на пятнадцать зависят от его профессиональных знаний и процентов на восемьдесят пять от его умения общаться с людьми в этом контексте легко объяснимы попытки многих исследователей сформулировать и обосновать основные принципы этики делового общения или как их чаще называют на Западе заповеди personal public relation весьма приближенно можно перевести как деловой этикет. Только поведение...
24405. Системы этического знания: теоретическая и нормативная этика 102 KB
  Системы этического знания: теоретическая и нормативная этика. Этика наука изучающая феномен морали. Слово этика от греч. В целом же слова этика мораль нравственность продолжают употребляться как взаимозаменяемые.
24406. Система этического знания 30 KB
  Этика обычай нрав характер это совокупность принципов и норм поведения принятых в данной эпохе и в данной социальной среде. Этика зарождается в обществе как результат осознания роли и сущности моральных отношений и в развитом состоянии представляет собой науку о морали содержащую две составляющих: теоретические исследования теоретическая этика и нормативные разработки нормативная этика. Теоретическая этика исследует происхождение и сущность морали ее роль и место в обществе функции механизм действия ее...
24407. Профессиональная этика. Этика управления. Взаимоотношения руководителя и подчиненных 32.5 KB
  Профессиональная этика. Этика управления. Профессиональная этика это совокупность определенных обязанностей и норм поведения поддерживающих моральный престиж профессиональных групп в обществе. Профессиональная этика вырабатывает нормы стандарты требования характерные для определенных видов деятельности.
24408. Этика делового общения 34 KB
  Этика делового общения Умение вести себя с людьми надлежащим образом является одним из важнейших если не важнейшим фактором определяющим шансы добиться успеха в бизнесе служебной или предпринимательской деятельности. В этом контексте легко объяснимы попытки многих исследователей сформулировать и обосновать основные принципы этики делового общения Джен Ягер выделяет шесть следующих основных принципов: 1. Во втором случае оно проходит с помощью переписки или технических средств а первом при непосредственном контакте субъектов общения....
24409. Деловой этикет - это установленный порядок поведения в сфере бизнеса и деловых контактов 34.5 KB
  Деловой этикет это установленный порядок поведения в сфере бизнеса и деловых контактов. Деловой этикет включает в себя следующие разделы: Технологии невербального общения: жесты хорошего тона походка как правильно сидеть вход и выход из автомобиля рукопожатие и пр. Этикет если понимать его как установленный порядок поведения помогает избегать промахов или сгладить их доступными общепринятыми способами. Поэтому основную функцию или смысл этикета делового человека можно определить как формирование таких правил поведения в обществе...
24410. Имидж и его свойства 41 KB
  Имидж складывается в ходе личных контактов человека на основе мнений высказываемых о нем окружающими. Многие индивиды от природы обладают привлекательным имиджем наделены обаянием. Однако отсутствие внешней привлекательности не должно мешать созданию благоприятного имиджа.
24411. Архитектура безопасности. Модели безопасности ее оценки. Общие критерии 44.5 KB
  Данные файла занимают весь первый кластер и только один байт второго остальная же часть второго кластера ничем не заполнена однако недоступна для других файлов эта незанятая область поанглийски называется slack. В следующем доступном кластере могут размещаться данные другого файла. Если под данные этого файла не хватит второго кластера файл будет продолжен в следующем доступном кластере. DOS использует FAT для хранения информации необходимой для доступа к файлам записанным на диске.