2533

Изучение процессов зарядки и разрядки конденсатора

Лабораторная работа

Физика

Изучить теорию зарядки и разрядки конденсатора, экспериментально получить зависимость напряжения на конденсаторе от времени при его зарядке и разрядке.

Русский

2013-01-06

125.98 KB

149 чел.

Дата       Фамилия      Группа

 

Лабораторная работа №26

I.Название работы:

Изучение процессов зарядки и разрядки конденсатора.  

Цель работы:

Изучить теорию зарядки и разрядки конденсатора, экспериментально получить зависимость напряжения на конденсаторе от времени при его зарядке и разрядке.

II.Краткое теоретическое обоснование:

Возникновение переходных процессов

В электрических цепях могут происходить включения или выключения пассивных (не содержащих источники энергии) или активных (содержащих источники энергии) ветвей, кроткие замыкания отдельных участков, различного рода переключения, внезапные изменения параметров и т. д. В результате таких изменении, называемых часто коммутационными или просто коммутациями, которые будем считать происходящими мгновенно, в цепи возникают переходные процессы, заканчивающиеся спустя некоторое (теоретически бесконечно большое) время после коммутации.

Законы коммутации

1.В любой ветви с индуктивностью ток и магнитный поток в момент коммутации сохраняют те значения, которые они имели до коммутации, и дальше начинают изменяться именно с этих значений.

2. В любой ветви напряжение и заряд на емкости сохраняют в момент коммутации те значения, которые они имели до коммутации, и в дальнейшим изменяются, начиная именно этих значении.

В дальнейшим мы будем изучать только изменение напряжения на конденсаторе при коротком замыкании цепи RC (ветви, имеющей последовательное соединение сопротивления R емкости С) и включении этой цепи RC  на постоянное напряжение, т.е. процессы разрядки и зарядки конденсатора.

Разрядка конденсатора

Зарядим разряженный конденсатор емкостью С путем перевода переключателя П в положение 1 (см рис. 11.1) до некоторого напряжения Uco

 Uc= Uco                                                                                                                                               (11.1)

В частности, при бесконечно большом времени зарядки   t  Uco

Затем переключатель П мгновенно перевести в положение 2, и конденсатор разряжается через сопротивление R. Введем следующие обозначения:

Uc мгновенное значение напряжения на конденсаторе;

Uco напряжение на конденсаторе при начале разрядки;                   

UR –мгновенное значение напряжения на сопротивлении; 

i  мгновенное значение тока в цепи;

q – заряд на обкладке конденсатора. 

                                UR = Ri = R • (dq/dt),       UC = (1/C)q                 (11.2)

Напомним второй закон Кирхгофа: в любом контуре алгебраическая сумма эдс равна алгебраической сумме напряжений на сопротивлениях, входящих в этот контур. Поэтому можно записать

                                 UR + UC = 0 ,                                 (11.3)

Из уравнений (11.2) и (11.3) получим                 

R (dq/dt) + (1/C)q=0

Преобразуем это уравнение к следующему виду

                                               (dq/dt)+ (1/RC)q=0                            (11.4)

Уравнение (11.4) представляет собой линейное однородное дифференциальное уравнение 1-го порядка. Его легко проинтегрировать, разделив переменные, т.е. записав в виде

dq/q = – (1/RC) dt

откуда следует

∫ (1 / q) dq = – ∫ (1/RC) dt

Взяв интегралы, получим

lg q = – (t/RC) + ln const

(имея в виду дальнейшие преобразования, мы постоянную интегрирования написали в виде ln const).                                                                         

Потенцирование этого соотношения дает

(q / const) = e – (t / RC)

отсюда                                           q = const e – (t / RC)                        (11.5)

Выражение (11.5) является общим решением уравнения (11.4). Значение const найдем из начальных условий. При t = 0 из (11.1) и (11.2) получим

q = UcoC

После подстановки полученного выражения в уравнение (11.5) получим:

UcoC = const e – (0 / RC) = const 1               

Поэтому уравнение (11.5) может быть представлено в следующем виде:

q = UcoC • C • e – (t / RC)

Разделив левую и правую части этого уравнения на С с учетом (11.2) можно записать

UC  = Uco   e – (t / RC)

Из (11.6) следует, что при коротком замыкании цепи R, С напряжение на конденсаторе убывает по экспоненциальному закону от Uco при t = 0 от 0 при     t=∞. Теоретически UC будет всегда больше нуля, т. к. t всегда конечная величина.

Зарядка конденсатора.

При полной разрядке конденсатора (при нулевом показании вольтметра, измеряющего напряжение на конденсаторе) мгновенно переключим переключатель П в положение 1 (см. рис.11.1)

По второму закону Кирхгофа можно записать:                        

                                   UR + UC = ε                                  (11.7)

(11.7) получим:

R (dq / dt) + (1 / C)q = ε

преобразуем это уравнение к следующему виду:

                         (dq / dt) + (1 / RC) q =  ε / R                    (11.8)

    Уравнение    (11.8)    представляет    собой    линейное    неоднородное    дифференциальное уравнение 1-го порядка. Как известно из теории дифференциальных уравнений, общее решение линейного неоднородного дифференциального уравнения можно получить, прибавив любое его частное решение к общему решению соответствующего однородного уравнения.         Уравнение   (11.5)   дает   общее   решение   однородного   уравнения.    Частное   решение получим  из условия,   что   конденсатор заряжается до напряжения  UС = ε при бесконечно большом времени зарядки t. Поэтому

                                    qчастн = ε C                                       (11.9)

Сложив (11.5) и (11.9), получим

                                 q = ε C + const e – (t / RC)                    (11.10)                   

Найдем const из начального условия при t = 0, UC = 0, q = 0.

0 = ε  Cε C  e – (t / RC)

const = ε  C

Тогда из (11.10) будем иметь:

q = ε  Cε C  e – (t / RC)

Разделив это уравнение на С, с учетом (11.2), запишем:

                               UС = ε (1 – e – (t / RC))                                (11.11)

Из уравнений (11.6) и (11.11) следует, что напряжение на емкости изменяется по экспоненциальному закону. Напряжение уменьшается или возрастает тем медленнее, чем больше произведение RС. Поэтому произведение RС называют постоянной времени и обозначают буквой  τ (тау).

                                            τ = RС                                   (11.12)

Найдем физический смысл постоянной времени τ. В соответствии с (11.6)

(UC / UC (t + τ)) = (UCO  e – (t / RC)) / (UCO  e – (t+τ ) / (RC)) = e  (τ / RC) = e  (RC / RC) = e

UC  (t + τ) = UC (t) / e

Следовательно, τ – это время, за которое напряжение на конденсаторе уменьшится в е раз.

Постоянную времени τ называют также временем релаксации (от латинского «relaxatio» – ослабление, уменьшение напряжения).

Найдем уравнение касательной к экспоненте (11.6) с учетом (11.12).  

dUC / dt = UCO  e – (t / τ) (– (l / τ)) = – UC / τ = tg α

Экспонента (.11.6) и касательная к ней в момент t показаны на рис. 11.2.

Из  рис. 11.2 следует, что τ – это время, за которое напряжение на конденсаторе достигло бы установившегося значения UC=0, если с момента t скорость изменения напряжения на конденсаторе не изменялась бы.   

III.Рабочие формулы и единицы измерения.

τ = RС                     UR + UC = ε

IV.Схема установки.

V.Измерительные приборы и принадлежности.

  1.  Конденсатор
  2.  Секундомер
  3.  Элемент питания

VI.Результаты измерения.

Изменение напряжения Uc, B

Время изменения напряжения t ,c

Среднее время tср, с

      от                  до

1-ый опыт     2-ой опыт

       0                  0,1             

      4,45                5,3

4,875

       0                  0,2

       9,6                10,4

10

       0                  0,3

       16                 16,6

16,3

       0                  0,4

      24,6               25,7

25,15

       0                  0,5

      36,1               37,3

36,7

       0                  0,6

        52                53,2

52,6

Изменение напряжения Uc, B

Время изменения напряжения t ,c

Среднее время tср, с

      от                  до

1-ый опыт     2-ой опыт

       0,7                  0,6             

      2,9                  2,6   

2,75

       0,7                  0,5

      5,5                  5,2

5,35

       0,7                  0,4

      8,9                  8,7

8,8

       0,7                  0,3

     14,1                13,4

13,75

       0,7                  0,2

       27                 21,1

24,05

VII. Черновые записи и вычисления.

tср = (9,6 + 10,4) / 2 =10                                        tср = (2,9 + 2,6) / 2 = 2,75

tср = (16 + 16,6) / 2 =16,3                                      tср = (5,5 + 5,2) / 2 = 5,35

tср = (24,6 + 25,7) / 2 =25,15                                 tср = (8,9 + 8,7) / 2= 8,8

tср = (36,1 + 37,3) / 2 =36,7                                   tср = (14,1 + 13,4) / 2 = 13,75

tср = (52 + 53,2) / 2 =52,6                                      tср = (27 + 21,1) / 2 = 24,05

VIII. Основные выводы.

Мы изучили теорию зарядки и разрядки конденсатора, экспериментально получили зависимость напряжения на конденсаторе от времени при его зарядке и разрядке.

IX. Графики.


 

А также другие работы, которые могут Вас заинтересовать

20500. Трикутні матриці (верхня та нижня) і їх розклад на добуток двох трикутних 37 KB
  Трику́тна ма́триця матриця в якій всі елементи нижче або вище за головну діагональ рівні нулю. Верхньотрикутна матриця квадратна матриця в якій всі елементи нижче за головну діагональ дорівнюють нулю. Нижньотрикутна матриця квадратна матриця в якій всі елементи вище за головну діагональ дорівнюють нулю. Унітрикутна матриця верхня або нижня трикутна матриця в якій всі елементи на головній діагоналі дорівнюють одиниці.
20501. Форми, типи форм, обчислення в формах 33 KB
  Робота з формами може відбуватися в трьох режимах: у режимі Форми в режимі Таблиці в режимі констриктор. типи форм В Access можна створити форми наступних видів: форма в стовпець або повноекранна форма; стрічкова форма; таблична форма; форма головна підпорядкована; зведена таблиця; формадіаграма. Форма в стовпець є сукупністю певним чином розташованих полів введення з відповідними їм мітками і елементами управління.
20502. Маніпулювання даними, операції над схемою бази даних за допомогою мови SQL 27.5 KB
  Маніпулювання даними операції над схемою бази даних за допомогою мови SQL Для маніпулювання данними виділяють такі групи команд SQL:Команди мови визначення даних DDL Data Definition Language. DDL Data Definition Language мова визначення даних це підмножина SQL що використовується для визначення та модифікації різних структур даних.До даної групи відносяться команди призначені для створення зміни та видалення різних об'єктів бази даних. Команди CREATE створення ALTER модифікація і DROP видалення мають...
20503. Матриця суміжності та матриця інцидентності 28 KB
  Матриця суміжності графа G зі скінченною кількістю вершин n пронумерованих числами від 1 до n це квадратна матриця A розміру n в якій значення елементу aij рівне числу ребер з iї вершини графа в jу вершину. Матриця суміжності простого графа що не містить петель і кратних ребер є бінарною матрицею і містить нулі на головній діагоналі. Матриця суміжності неорієнтованого графа симетрична а значить володіє дійсними власними значеннями і ортогональним базисом з власних векторів.
20504. Метод ітерації (метод послідовних наближень) 88 KB
   Суть методу полягає у заміні початкового рівняння 4.18 еквівалентним йому рівнянням 4.19 Постановка задачі Нехай задано рівняння де неперервна нелінійна функція. Потрібно визначити корінь цього рівняння який знаходиться на відрізку з заданою похибкою .
20505. Метод послідовних наближень (метод ітерацій) для розв’язку системи лінійних рівнянь 91 KB
  11 пошуку розвязку системи с заданою похибкою відповідно теоремі про збіжність.11 виконується то ітераційний процес пошуку розвязку системи с заданою похибкою збігається і метод послідовних наближень можна використовувати.13 що легко розвязується для знаходження вектора розвязку першого наближення тому що в правої частині містить всі визначені елементи.
20506. Мова запитів SQL. Огляд її можливостей 27 KB
  Він по суті містив тільки пропозиція SELECT яке дозволяло формулювати запити для вибірки даних з бази. Потім мова була доповнено двома іншими компонентами необхідними для роботи з базами даних. Перший з них компонент для визначення структури бази даних які в термінології теорії баз даних називаються мовою визначення даних МВД. Другий засоби що дозволяють заповнювати базу даних змінювати їх і видаляти.
20507. Моделі подання знань.Вимоги до моделей подання знань 26.5 KB
  Моделі подання знань.Вимоги до моделей подання знань Подання знань це множина синтаксичних і семантичних угод що роблять можливим формальне вираження знань про предметну галузь у компютерноінтерпретованій формі. Найрозповсюдженішими є такі моделі представлення знань: логічні моделі продукційні моделі фреймові моделі семантичні мережі. До основних вимог подання знань належать: Лаконічність зміст друкованих знаків.
20508. Неорієнтовані та орієнтовані графи 27 KB
  Граф це сукупність об'єктів із зв'язками між ними. Об'єкти розглядаються як вершини або вузли графу а зв'язки як дуги або ребра. Для різних областей використання види графів можуть відрізнятися орієнтовністю обмеженнями на кількість зв'язків і додатковими даними про вершини або ребра.