2536

Изучение электрического тока в электровакуумном триоде

Лабораторная работа

Физика

Изучить теорию электровакуумного триода, снять экспериментально анодно-сеточную и анодную характеристики электровакуумного триода, рассчитать параметры триода.

Русский

2013-01-06

111.06 KB

36 чел.

Дата       Фамилия       Группа

Лабораторная работа №25.

I.Название работы:

Изучение электрического тока в электровакуумном триоде.

Цель работы:

Изучить теорию электровакуумного триода; снять экспериментально анодно-сеточную и анодную характеристики электровакуумного триода; рассчитать параметры триода.

II.Краткое теоретическое обоснование:

Напряжение между анодом и катодом будем обозначать через Ua = φa и назвать его напряжением на аноде, а напряжение между сеткой и анодом через Uc = φc и называть его напряжением на сетке. При работе триода напряжение накала в процессе работы лампы не меняется. Поэтому, можно считать, что анодный ток триода зависит от анодного и сеточного напряжений: Ia = Ia (Ua, Uc). Эту зависимость удобно исследовать дважды:

  1.  Ia = Ia (Ua) при Uc = const;
  2.  Ia = Ia (Uc) при Ua = const.

Первая из этих зависимостей называется анодной характеристикой триода, вторая называется сеточной характеристикой. Параметрами всякого прибора, в том числе электровакуумного, называют определенные постоянные величины, характеризующие те или иные свойства данного прибора. Основными параметрами триода являются:

  1.  коэффициент усиления µ;
    1.  крутизна характеристики S;
    2.  внутреннее сопротивление R1.

Чтобы определить эти параметры необходимо иметь семейство анодно-сеточных характеристик, снятых при значениях анодного напряжения U1 (кривая 1) и U2 (кривая 2). Выберем линейные участки анодно-сеточных характеристик. Найдем значения Ia1 и Ia2 на кривых 1 и 2, соответствующие напряжению Ua (точки А и В). Найдем точку С на кривой1 (соответствующую точку Ia2 и напряжению Uc2). Точки А, В и С должны находиться на линейных участках кривых 1 и 2. При изменении анодного напряжения на величину ∆Ua = Ua2Ua1 при Uc = Uc1 анодный ток изменяется на величину ∆Ia = Ia1Ia2. При изменении сеточного напряжения на величину ∆Uс = Uс2Uс1 и при Uа = Uа1 анодный ток изменяется на ту же величину ∆I. Коэффициент усиления триода µ показывает, во сколько раз действие изменения напряжения на сетке на электронный поток больше действия такого же изменения напряжения на аноде. Поэтому, при ∆Ia = Ia1Ia2.

III.Рабочие формулы и единицы измерения.

µ = ∆Ua/∆Uc = (Ua2 –Ua1)/(Uc2 – Uc1)

S = ∆Ia/∆Uc = Ia2 – Ia1)/(Uc2 – Uc1), при:

Ua = Ua2

Ri = ∆Ua/∆Uc = (Ua2 –Ua1)/(Ia2 – Ia1), при:

Uc = Uc1

S*Ri*1/µ = 1.

IV.Схема установки.

V.Измерительные приборы и принадлежности.

Принципиальная электрическая схема лабораторной установки представлена на рисунке. Установка содержит: исследуемый электровакуумный триод Л, трансформатор Тр, двухполупериодные выпрямители В1 и В2, потенциометры П1 и П2, вольтметры постоянного тока Ia. Трансформатор Тр имеет первичную обмотку, подключаемую с помощью выключателя Вк и вилки (на схеме не показана) к электросети переменного тьока частотой 50Гц и напряжением 220В. Вторичные обмотки I и II питают выпрямители В1 и В2, вторичная обмотка Н подает напряжение на накальную спираль лампы Л (на схеме соединительные провода не показаны). Выпрямленные напряжения с выпрямителей В1 иВ2 подаются на клеммы 1 и 2 потенциометров П1 и П2. Анодное напряжение Ua снимается с подвижного контакта 3 и клеммы 2 потенциометра П2 и измеряется вольтметром Va. При перемещении подвижного контакта вверх анодное напряжение возрастает. Сеточное напряжение снимается с подвижного контакта  3 и клеммы 4 потенциометра П1. Если подвижный контакт находится выше клеммы 4, то потенциал сетки выше потенциала катода, а если ниже, то потенциал сетки ниже потенциала катода (φс < 0). Сеточное напряжение Uc измеряется вольтметром Vc, имеющим 0  в центре шкалы. Анодный ток лампы Ia зависит от положения подвижных контактов 3 потенциометров П1 и П2. Он измеряется миллиамперметром Ic.

VI.Результаты измерения.

Uc = -4B

Uc = 0B

Uc = 4B

Анодные характеристики

Ua, B

Ia, A

Ua, B

Ia, A

Ua, B

Ia, A

0

0

0

0

0

0

20

0,1*10-3

20

2*10-3

20

4*10-3

40

0,15*10-3

40

4*10-3

40

6*10-3

60

0,2*10-3

60

6*10-3

60

9*10-3

80

0,5*10-3

80

8*10-3

80

12*10-3

100

1,5*10-3

100

10,5*10-3

100

15*10-3

120

3*10-3

120

12*10-3

120

18*10-3

140

5*10-3

140

16*10-3140

140

22*10-3

160

12*10-3

160

20*10-3

160

24*10-3

180

17*10-3

180

23*10-3

180

28*10-3

Ua = 100B

Ua = 160B

Анодно-сеточные характеристики

Uc, B

Ia, A

Uc, B

Ia, A

-6

0,1*10-3

-6

1,5*10-3

-4

0,5*10-3

-4

4*10-3

-2

2*10-3

-2

7*10-3

0

6*10-3

0

12*10-3

1

8*10-3

1

15*10-3

1,5

9*10-3

1,5

17*10-3

2

10*10-3

2

18*10-3

2,5

11*10-3

2,5

19*10-3

3

12*10-3

3

20*10-3

4

15*10-3

4

23*10-3

VII. Черновые записи и вычисления.

Возьмем на линейных участках анодно-сеточных характеристик Ua1 = 100B, Uaa = 100B, Uc1 = -0,5B. Uc2 = 2,5B, Ia1 = 5mA, Ia22 = 11mA.

Произведем расчеты:

µ = (160B – 100B)/(2,5B – (-0,5B)) = 60/3 = 20;

S = (11 – 5)/(2,5 – (-0,5)) = 6/3 = 2:

Ri = (160 – 100)/(11 – 5) = 60/6 =10;

2*10*1/20 = 1

1 = 1.

VIII. Основные выводы.

В ходе работы была изучена теория электровакуумного триода. Были сняты экспериментально анодные и анодно-сеточные характеристики электровакуумного триода. Надо отметить, что изучению подвергаются только те диапазоны напряжений и токов, в которых зависимость последних от первых является линейной. На таких участках были рассчитаны в данной работе параметры триода. Также было проверено внутреннее уравнение триода.

Ua = 100B

Ua = 160B


 

А также другие работы, которые могут Вас заинтересовать

81555. Обмен железа: всасывание, транспорт кровью, депонирование. Нарушение обмена железа: железодефицитная анемия, гемохроматоз 121.13 KB
  Нарушение обмена железа: железодефицитная анемия гемохроматоз. Освобождению железа из солей органических кислот способствует кислая среда желудочного сока. Наибольшее количество железа всасывается в двенадцатиперстной кишке.
81556. Основные белковые фракции плазмы крови и их функции. Значение их определения для диагностики заболеваний. Энзимодиагностика 115.07 KB
  Почти все белки плазмы, за исключением альбумина, являются гликопротеинами. Олигосахариды присоединяются к белкам, образуя гликозидные связи с гидроксильной группой серина или треонина, или взаимодействуя с карбоксильной группой аспарагина. Концевой остаток олигосахаридов в большинстве случаев представляет собой N-ацетилнейраминовую кислоту, соединённую с галактозой
81557. Свертывающая система крови. Этапы образования фибринового сгустка. Внутренний и внешний пути свертывания и их компоненты 234.47 KB
  При повреждении кровеносного сосуда инициируется каскад реакций, в результате которого образуется сгусток крови - тромб, предотвращающий кровотечение. Основную роль в свёртывании (коагуляции) крови играют тромбоциты и ряд белков плазмы крови. В остановке кровотечения различают 3 этапа. На первом этапе происходит сокращение кровеносного сосуда
81558. Принципы образования и последовательность фукционирования ферментных комплексов прокоагулянтного пути. Роль витамина К в свертывании крови 107.4 KB
  В циркулирующей крови содержатся проферменты протеолитических ферментов: фактор II протромбин фактор VII проконвертин фактор IX Кристмаса фактор X Стюарта. Находящиеся в крови факторы V акцелерин и VIII антигемофильный фактор а также мембранный белок тканевый фактор ТФ фактор III являются белкамиактиваторами этих ферментов. Комплекс XVСа2 протромбиназный комплекс активирует протромбин фактор II. В процессе реализации тромбогенного сигнала проферменты факторы VII IX X и II частичным протеолизом превращаются в...
81559. Основные механизмы фибринолиза. Активаторы плазминогена как тромболитические средства. Основаные антикоагулянты крови: антитромбин III, макроглобулин, антиконвертин. Гемофилии 154.37 KB
  Основаные антикоагулянты крови: антитромбин III макроглобулин антиконвертин. Такие ингибиторы ферментов свёртывания крови как α2макроглобулин α1антитрипсин и комплекс антитромбин IIIгепарин также обладают небольшой фибринолитической активностью. Снижение фибринолитической активности крови сопровождается тромбозами. Нарушение разрушения фибринового сгустка может быть вызвано наследственным дефицитом плазминогена или генетическим дефектом его структуры снижением поступления в кровь активаторов плазминогена повышением содержания в крови...
81560. Клиническое значение биохимического анализа крови 101.37 KB
  Среди медицинских анализов особенное значение имеет анализ крови связующего звена между всеми системами и органами тела. Распространенным лабораторным методом изучения ее состава является биохимический анализ крови. В связи со своей универсальностью биохимический анализ крови назначается врачами разных медицинских специальностей терапевтами кардиологами гастроэнтерологами ревматологами и другими.
81561. Основные мембраны клетки и их функции. Общие свойства мембран: жидкостность, поперечная асимметрия, избирательная проницаемость 106.22 KB
  Все клетки имеют мембраны. Мембраны ответственны за выполнение многих важнейших функций клетки. К основным функциям мембран можно отнести: отделение клетки от окружающей среды и формирование внутриклеточных компартментовотсеков; контроль и регулирование транспорта огромного разнообразия веществ через мембраны; участие в обеспечении межклеточных взаимодействий передаче внутрь клетки сигналов; преобразование энергии пищевых органических веществ в энергию химических связей молекул АТФ.
81562. Липидный состав мембран (фосфолипиды, гликолипиды, холестерин). Роль липидов в формировании липидного бислоя 104.87 KB
  В мембранах присутствуют липиды трёх главных типов фосфолипиды гликолипиды и холестерол холестерин. Липидный состав мембран различен содержание того или другого липида повидимому определяется разнообразием функций выполняемых этими липидами в мембранах. В мембранах эукариотических клеток обнаружено огромное количество разных фосфолипидов причём они распределены неравномерно по разным клеточным мембранам. В плазматических мембранах клеток в значительных количествах содержатся сфингомиелины.
81563. Белки мембран - интегральные, поверхностные, «заякоренные». Значение посттрансляционных модификаций в образовании функциональных мембранных белков 104.74 KB
  Мембранные белки контактирующие с гидрофобной частью липидного бислоя должны быть амфифильными. Белки мембран различаются по своему положению в мембране. Они могут глубоко проникать в липидный бислой или даже пронизывать его интегральные белки либо разными способами прикрепляться к мембране поверхностные белки. Поверхностные белки.