2537

Движение заряженных частиц в в электрическом и магнитном поле

Лабораторная работа

Физика

Определение удельного заряда методом магнетрона. Движение заряженных частиц в магнитном поле.

Русский

2013-01-06

97 KB

331 чел.

Цель работы:

  •  изучить движение заряженных частиц в электрическом и магнитных полях.
  •  определить удельный заряд электрона.

Теория

В электрическом поле на заряженную частицу, например, электрон, действует сила, пропорциональная величине заряда e и направленности поля Е

       (1)

Под действием этой силы электрон, имеющий отрицательный заряд, перемещается в направлении, обратном направлению вектора  (рис 1 a)

Пусть между плоскопараллельными пластинами приложена некоторая разность потенциалов U. Между пластинами создаётся однородное электрическое поле, напряжённость которого равна         (2), где d – расстояние между пластинами.

            

Рассмотрим траекторию электрона, влетающего в однородное электрическое поле с некоторой скоростью (рис 1 б) .

Горизонтальная составляющая силы равна нулю, поэтому и составляющая  скорости электрона остаётся постоянной и равна . Следовательно координата Х электрона определяется как

    (3)

В вертикальном направлении под действием силы  электрону сообщается некоторое ускорение , которое согласно второму закону Ньютона равно

        (4)

Следовательно за время  электрон приобретает вертикальную составляющую скорости                                                 (5)

Откуда                                    .

Изменение координаты У электрона от времени получим, проинтегрировав последнее выражение:

       (6)

Подставим значение t из (3) в (6) и получим уравнение движения электрона У (Х)

                 (7)

Выражение (7) представляет собой уравнение параболы.

Если длина пластин равна , то за время пролёта между пластинами электрон приобретает горизонтальную составляющую

              (8)

из (рис 1 б) следует, что тангенс угла отклонения электрона равен

     (9)

Таким образом, смещение электрона, как и любой другой заряженной частицы, в электрическом поле пропорционально напряжённости электрического поля и зависит от величины удельного заряда частицы е/m.

Движение заряженных частиц в магнитном поле.

Рассмотрим теперь траекторию электрона , влетающего в однородное магнитное поле со скоростью  (рис.2)

Магнитное поле воздействует на электрон с силой Fл , величина которой определяется соотношением Лоренца

               (10)

или в скалярном виде

       (11)

где В – индукция магнитного поля;

- угол между векторами  и . Направление силы Лоренца определяется по правилу левой руки с учётом знака заряда частицы.

Отметим, что сила, действующая на электрон, всегда перпендикулярна вектору скорости и, следовательно, является центростремительной силой. В однородном магнитном поле под действием центростремительной силы электрон будет двигаться по окружности радиуса R.  Если электрон движется прямолинейно вдоль силовых линий магнитного поля, т.е. =0, то сила Лоренца Fл равна нулю и электрон проходит магнитное поле, не меняя направления движения. Если вектор скорости перпендикулярен вектору , то сила действия магнитного поля на электрон максимальна

Так как сила Лоренца является центростремительной силой, то можно записать: , откуда радиус окружности, по которой движется электрон, равен:

               (13)

Более сложную траекторию  описывает электрон, влетающий в магнитное поле со скоростью  под некоторым углом к вектору  (рис.3). В этом случае скорость электрона имеет нормальную и тангенциальную  составляющие. Первая из них вызвана действием силы Лоренца, вторая обусловлена движением электрона по инерции. В результате электрон движется по цилиндрической спирали. Период его обращения равен     (14)  , а частота      (15). Подставим значение R  из (13) в (15):              

Из последнего выражения следует, что частота обращения электрона не зависит ни от величины, ни от направления его начальной скорости и определяется только величинами удельного заряда и магнитного поля. Это обстоятельство используется для фокусировки электронных пучков в электронно-лучевых приборах. Действительно, если в магнитном поле попадает пучок электронов, содержащий частицы с различными скоростями (рис.4), то все они опишут спираль разного радиуса, но встретятся в одной и той же точке согласно уравнению (16). Принцип магнитной фокусировки электронного пучка и лежит в основе одного из методов определения е/m. Зная величину В и измерив частоту обращения электронов , по формуле (16) легко вычислить значение удельного заряда.

Если зона действия магнитного поля ограничена, а скорость электрона достаточно велика, то электрон движется по дуге и вылетает из магнитного поля, изменив направление своего движения (рис 5). Угол отклонения рассчитывается так же, как и для электрического поля и равен:   , (17)                              где  в данном случае – протяжённость зоны действия магнитного поля. Таким образом, отклонение электрона в магнитном поле пропорционально е/m и В и обратно пропорционально .

В скрещенных электрическом и магнитном полях отклонение электрона зависит от направления векторов  и  и соотношения их модулей. На рис. 6 электрическое и магнитное поля взаимно перпендикулярны и направлены таким образом, что первое из них стремиться отклонить электрон вверх, а второе – вниз. Направление отклонения зависит от соотношения сил Fл и . Очевидно, что при равенстве сил  и Fл                                 (18)                       электрон не изменит направления своего движения.

Предположим, что под действием магнитного поля электрон отклонился на некоторый угол . Затем приложим электрическое поле некой величины, чтобы смещение оказалось равным нулю. Найдём из условия равенства сил (18) скорость  и подставим её значение в уравнение (17).

Откуда                                     

                 (19)

Таким образом зная угол отклонения , вызванный магнитным полем , и величину электрического поля , компенсирующую это отклонение, можно определить величину удельного заряда электрона е/m .

Определение удельного заряда методом магнетрона.

Определение е/m в скрещенных электрическом и магнитном полях может быть выполнено также с помощью двухэлектродного электровакуумного прибора – диода. Этот метод известен в физике, как метод магнетрона. Название метода связано с тем, что используемая в диоде конфигурация электрического и магнитного полей идентична конфигурации полей в магнетронах – приборах, используемых для генерации электромагнитных колебаний в СВЧ - области.

Между цилиндрическим анодом А и цилиндрическим катодом К (рис.7), расположенным вдоль анода, приложена некоторая разность потенциалов U , создающая электрическое поле E, направленное по радиусу от анода к катоду. В отсутствие магнитного поля (В=0) электроны движутся прямолинейно от катода к аноду.

При наложении слабого магнитного поля, направление которого параллельно оси электродов, траектория электронов искривляется под действием силы Лоренца, но они достигают анода. При некотором критическом значении индукции магнитного поля В=Вкр, траектория электронов искривляется настолько, что в момент достижения электронами анода вектор их скорости направлен по касательной к аноду. И, наконец, при достаточно сильном магнитном поле В>Вкр, электроны не попадают на анод. Значение Вкр не является постоянной величиной для данного прибора и зависит от величины приложенной между анодом и катодом разности потенциалов.

Точный расчёт траектории движения электронов в магнетроне сложен, так как электрон движется в неоднородном радиальном электрическом поле. Однако, если радиус

катода много меньше радиуса анода b, то электрон описывает траекторию, близкую к круговой, так как напряжённость электрического поля, ускоряющего электроны, будет максимальной в узкой прикатодной области. При В=Вкр радиус круговой траектории электрона, как видно из рис.8. будет равен половине радиуса анода R=b/2. Следовательно, согласно (13) для Вкр имеем:

                (20)

С другой стороны кинетическая энергия электронов, находящихся вблизи анода, определяется только разностью потенциалов между анодом и катодом, так как в магнитном поле скорость не изменяется по величине. Тогда , откуда

       (21)

Подставив значение  из (20) в (21), получи выражение для расчёта удельного заряда электрона:

         (22)

Таким образом, для определения удельного заряда электрона методом магнетрона, достаточно измерить анодную разность потенциалов U , критическое значение индукции магнитного поля Вкр и радиус анода b.


 

А также другие работы, которые могут Вас заинтересовать

25977. Аудит учета готовой продукции, её отгрузки и реализации 39.5 KB
  Далее уточняется как оценивается готовая продукция; правильность оценки и определения себестоимости каждого вида продукции; правильность расчета отклонений фактической себестоимости от плановой нормативной и составления бухгалтерских проводок по учету готовой продукции; соответствие данных аналитического учета готовой продукции с данными синтетического учета. Полноту оприходования произведенной продукции можно проверить путем составления альтернативного баланса расхода сырья и материалов выхода готовой продукции исходя из нормативных...
25978. Аудит учета нематериальных активов 40 KB
  При анализе системы внутреннего контроля аудитор обращает внимание на следующее: определен ли круг лиц ответственных за сохранность нематериальных активов; каким образом организация обеспечивает неразглашение коммерческой тайны; создана ли комиссия по приемке нематериальных активов; проводится ли инвентаризация нематериальных активов. Чтобы сделать вывод об организации бухгалтерского учета аудитор анализирует учетную политику на момент раскрытия в ней информации: о способах оценки нематериальных активов приобретенных не за...
25979. Холодная пластическая деформация 169 KB
  Основными механизмами сдвиговой пластической деформации кристаллических тел являются скольжение и двойникование. Скольжение - это такое перемещение одной части кристалла относительно другой, при котором кристаллическое строение обеих частей остается неизменным
25980. Аудиторская проверка финансовых вложений 43 KB
  Как и при проверке других активов аудитор исходит из предпосылок: полноты все финансовые вложения отражены в бухгалтерском учете и бухгалтерской отчетности не существует неучтенных финансовых вложений: в бухгалтерском учете и отчетности отражены все приобретенные организацией ценные бумаги и выданные займы; сальдо и обороты по счетам синтетического учета финансовых вложений совпадают с сальдо и оборотами по счетам аналитического учета; сальдо и обороты по счетам в полном объеме перенесены из регистров бухгалтерского учета в Главную книгу и...
25981. АУДИТ УЧЕТА ФИНАНСОВЫХ РЕЗУЛЬТАТОВ И ИХ ИСПОЛЬЗОВАНИЯ 35.5 KB
  Выручка от продукции реализованной на сторону отражается прежде всего на счете 90. Кроме того на данном счете отражается себестоимость реализованной продукции которая включает в себя: себестоимость готовой продукции и полуфабрикатов собственного производства; себестоимость работ и услуг промышленного характера; стоимость покупных изделий; стоимость строительномонтажных и проектноизыскательских работ; стоимость товаров; расходы по перевозке грузов; транспортноэкспедиционные расходы на погрузочноразгрузочные работы; услуги связи; зарплата...
25982. Аудит учета финансовых вложений 40.5 KB
  Законодательные и нормативные документыПри учете и аудите финансовых вложений необходимо руководствоваться следующими законодательнонормативными документами:1. Положение по бухгалтерскому учету Учет финансовых вложений ПБУ 19 02 утвержденное приказом Минфина России от 10. Методические указания по инвентаризации имущества и финансовых обязательств приказ Минфина России от 13 июня 1995 г.
25983. Философия Гераклита. Принципы диалектики. Диалектика и метафизика 25.3 KB
  Принципы диалектики. Согласно его рассуждениям мудрый тот кто не дает названия предметамони меняются Основные принципы диалектики. Гегель расширил понимание диалектики вывел ее из рамки движения мыслиувидел столкновение и объединение противоположностей в самой действительности в истории в культуре. В современных вариантах диалектики практически отсутствует понимания ее как о развитии.
25984. Философия и жизнь Сократа 19.09 KB
  Философия и жизнь Сократа О жизни и деятельности Сократа одного из величайших философов Древней Греции можно узнать лишь по произведениям его современников и учеников в первую очередь Платона потому что сам Сократ письменных источников после себя не оставил. Платон же познакомился с Сократом за восемь лет до гибели последнего когда Сократу было уже за шестьдесят и встреча эта произвела революцию в душе будущего знаменитого философа. Платон же написал и Апологию Сократа из которой можно узнать о некоторых аспектах сократовской...
25985. Платон. Сущность философского идеализма 18.03 KB
  Выделить в творчестве Платона какойлибо аспект и систематически изложить его довольно сложно так как приходится реконструировать мысли Платона из отдельных высказываний которые настолько динамичны что в процессе эволюции мысли порой превращаются в свою противоположность.Систематическое широкое использование математического материала имеет место у Платона начиная с диалога Менон где Платон подводит к основному выводу с помощью геометрического доказательства. Значительно в большей мере чем в гносеологии влияние математики...