2560

Спектр атома водорода

Лабораторная работа

Физика

Цель работы: измерить длины волн трех линий в спектре атома водорода и вычислить значение постоянной Ридберга.

Русский

2013-01-06

82.38 KB

20 чел.

Цель работы: измерить длины волн трех линий H, H, H в спектре атома водорода и вычислить значение постоянной Ридберга.

Изучение атомных спектров послужило ключом к познанию строения атома. Прежде всего, было замечено, что линии в спектрах атомов располагается не беспорядочно, а группируется в так называемые серии. Отчетливее всего это обнаруживается в спектре атома водорода, изображенном на рис. 1.

Р и с. 1

Очевидно, что линии располагаются в определенном порядке в виде серий, а расстояние между линиями в каждой серии закономерно убывает по мере перехода от более длинных волн к более коротким. Швейцарский физик Иоганн Бальмер обнаружил (1885 г.), что длины волн линий водорода могут быть точно представлены формулой (1) или, при переходе от длины волны к частоте, , (2) где R = 109737 см-1 (3)  эмпирическая постоянная, называемая постоянной Ридберга, с  скорость света в вакууме.

С помощью формул (1) и (2) можно получить λ иди υ любой линии в любой серии. Так, если положить n2 = 1, а величине n1 придавать значения 2,3,4,... , то получим длины волн (частоты) линий в серии Лаймана:

серия Лаймана: n2 = 1, n1 = 2,3,4 ... (ультрафиолетовая область)

Аналогично, линии остальных серий получаются при следующих значениях n2 и n1:

серия Бальмера: n2 = 2, n1 = 3,4,5 ... (видимая область)

серия Пашена: n2 = 3, n1 = 4,5,б... (инфракрасная область)

серия Брэкета: n2 = 4, n1 = 5,6,7 (инфракрасная область)

серия Пфунда: n2 = 5, n1 = б,7,8 ... (инфракрасная область)

Кратко рассмотрим конечный результат квантовомеханического описания атома водорода. Здесь состояние атома задается также тремя квантовыми числами: главным n, орбитальным l и магнитным m, которые принимают несколько иные значения, а именно:

n = 1, 2, 3,...; l = 0, 1, 2,...n1; m = 0, 1, 2, …  l.

С одной стороны, эти квантовые числа задают состояние электрона в виде так называемой волновой функции ( Величину ни в коем случае нельзя понимать как траекторию электрона. В квантовой механике понятие траектории лишено общепринятого смысла), квадрат модуля которой определяет вероятность dW того, что частица будет обнаружена в пределах элементарного объема dV:  или, другими словами, дает плотность вероятности (вероятность, приходящуюся на единицу объема) нахождения частицы в данном месте пространства, т.е. .

С другой стороны, квантовые числа n, l, m определяют некоторые физические величины, характеризующие состояния атома водорода. Так, возможные значения энергии атома определяется точно так же, как и в случае модели Бора-Зоммерфельда, а именно: (13)

Момент импульса и его проекции определяются следующим образом: (14) (15). Чисто внешне приведенные результаты похожи на результаты теории Зоммерфельда. Здесь также можно говорить о вырождении энергетических уровней: уровень с данным n n-кратно вырожден по l, состояние с данным l (2l+1)-кратно вырождено по m. В целом же, уровень с данным n n2 – кратно вырожден по l и т. Возможные состояния атома водорода (результат квантово-механического рассмотрения) и спектроскопические обозначения состояний даны на рис. 6, а и 6, б, соответственно.  

l

0

1

2

3

4

Состояние

s

p

d

f

g

a)

б)

Р и с. 6

Однако результаты этих двух теорий имеют и существенные различия. Так, в квантовой теории нельзя говорить о траектории электрона; величину весьма утрированно (и не совсем корректно) можно трактовать как распределение электрического заряда электрона около ядра; плотность такого электронного облака выше там, где величина имеет большее значение.

При квантовомеханическом рассмотрении атома водорода оказывается, что при различных значениях n квантовое число l может принимать, в частности, нулевое значение, т.е. в состояниях с определенными, отличными от нуля, значениями энергии атома Еn величина момента импульса электрона может оказаться равной нулю (такие случаи соответствуют сферически симметричным волновым функциям). Кроме того, из сравнения выражений (14) и (15) следует, что, при разрешенных взаимосвязях между квантовыми числами l и m, величина проекции момента импульса Nz никогда не может достигать величины самого момента N. Эти и подобные им эффекты, согласующиеся с экспериментом, не имеют аналога в классической физике и поэтому называются квантовыми эффектами.

ВЫПОЛНЕНИЕ РАБОТЫ

В данной работе источником излучения является водородная газоразрядная трубка. Спектр анализируется визуально с помощью монохроматора УМ-2.

  1.  С помощью монохроматора и градуировочного графика определить длины волн водородных линий Н, Н, Н.
  2.  Для каждой из наблюдаемых линий вычислить значение постоянной Ридберга, определить ее среднее значение по всем измерениям.

 

Вывод: был получен спектр атома водорода, также вычислена экспериментально постоянная Ридберга.


 

А также другие работы, которые могут Вас заинтересовать

19888. Зупинення і закінчення досудового слідства 131 KB
  ТЕМА 14: Зупинення і закінчення досудового слідства 1. Поняття підстави та процесуальний порядок зупинення досудового слідства 2. Підстави форми та процесуальний порядок закінчення досудового слідства 1. Поняття підстави та процесуальний порядок зупинення досуд
19889. Прокурорський нагляд за виконанням законів при провадженні дізнання і досудового слідства 46.17 KB
  ТЕМА 15: Прокурорський нагляд за виконанням законів при провадженні дізнання і досудового слідства План 1. Сутність прокурорського нагляду за органами дізнання і досудового слідства. 2. Форми і методи прокурорського нагляду за провадженням дізнання і досудового слі...
19890. Підсудність. Попередній розгляд справи суддею 25.78 KB
  ТЕМА 16: Підсудність. Попередній розгляд справи суддею План 1. Поняття і значення підсудності. 2. Види підсудності. 3. Процесуальний порядок попереднього розгляду справи суддею. 1. Поняття і значення підсудності Правосуддя в Україні здійснюється виключно судами.
19891. Судовий розгляд кримінальної справи 49.77 KB
  ТЕМА 17: Судовий розгляд кримінальної справи 1. Загальні положення судового розгляду. 2. Підготовча частина судового засідання. 3. Судове слідство 4. Судові дебати та останнє слово підсудного. 5. Постановлення вироку. 1. Загальні положення судового розгляду Судови...
19892. Провадження справ у апеляційній інстанції 48.86 KB
  ТЕМА 18: Провадження справ у апеляційній інстанції План 1. Суть завдання та основні риси апеляційного провадження. 2. Суб'єкти процесуальний порядок і строки розгляду в суді кримінальних справ у апеляційному провадженні. 3. Скасування зміна вироку ухвали постанови ...
19893. Застосування примусових заходів медичного характеру 28.32 KB
  ТЕМА 19: Застосування примусових заходів медичного характеру План 1. Поняття примусових заходів медичного характеру та їх види 2. Процесуальний порядок провадження досудового слідства в справах про діяння неосудних або обмежено осудних осіб 3. Особливості судового
19894. Протокольна форма досудової підготовки матеріалів 27.85 KB
  ТЕМА 20: Протокольна форма досудової підготовки матеріалів План 1. Сутність протокольної форми досудової підготовки матеріалів. 2. Порядок оформлення протокольної форми досудової підготовки матеріалів органами внутрішніх справ. 3. Процесуальний порядок провадження...
19895. Провадження у справах про злочини неповнолітніх 41.7 KB
  ТЕМА 21: Провадження у справах про злочини неповнолітніх План 1. Особливості провадження у кримінальних справах про злочини неповнолітніх. 2. Предмет доказування у справах про злочини неповнолітніх. 3. Особливості провадження досудового і судового слідства у справах ...
19896. Поняття і система інвестиційного права 78 KB
  Лекція № 1. Тема : Поняття і система інвестиційного права. Мета: Ознайомлення студентів з поняттям функціями та системою інвестиційного права місцем інвестиційного права в системі права України. План 1. Місце інвестиційного права в системі права України. 2. По...