2560

Спектр атома водорода

Лабораторная работа

Физика

Цель работы: измерить длины волн трех линий в спектре атома водорода и вычислить значение постоянной Ридберга.

Русский

2013-01-06

82.38 KB

20 чел.

Цель работы: измерить длины волн трех линий H, H, H в спектре атома водорода и вычислить значение постоянной Ридберга.

Изучение атомных спектров послужило ключом к познанию строения атома. Прежде всего, было замечено, что линии в спектрах атомов располагается не беспорядочно, а группируется в так называемые серии. Отчетливее всего это обнаруживается в спектре атома водорода, изображенном на рис. 1.

Р и с. 1

Очевидно, что линии располагаются в определенном порядке в виде серий, а расстояние между линиями в каждой серии закономерно убывает по мере перехода от более длинных волн к более коротким. Швейцарский физик Иоганн Бальмер обнаружил (1885 г.), что длины волн линий водорода могут быть точно представлены формулой (1) или, при переходе от длины волны к частоте, , (2) где R = 109737 см-1 (3)  эмпирическая постоянная, называемая постоянной Ридберга, с  скорость света в вакууме.

С помощью формул (1) и (2) можно получить λ иди υ любой линии в любой серии. Так, если положить n2 = 1, а величине n1 придавать значения 2,3,4,... , то получим длины волн (частоты) линий в серии Лаймана:

серия Лаймана: n2 = 1, n1 = 2,3,4 ... (ультрафиолетовая область)

Аналогично, линии остальных серий получаются при следующих значениях n2 и n1:

серия Бальмера: n2 = 2, n1 = 3,4,5 ... (видимая область)

серия Пашена: n2 = 3, n1 = 4,5,б... (инфракрасная область)

серия Брэкета: n2 = 4, n1 = 5,6,7 (инфракрасная область)

серия Пфунда: n2 = 5, n1 = б,7,8 ... (инфракрасная область)

Кратко рассмотрим конечный результат квантовомеханического описания атома водорода. Здесь состояние атома задается также тремя квантовыми числами: главным n, орбитальным l и магнитным m, которые принимают несколько иные значения, а именно:

n = 1, 2, 3,...; l = 0, 1, 2,...n1; m = 0, 1, 2, …  l.

С одной стороны, эти квантовые числа задают состояние электрона в виде так называемой волновой функции ( Величину ни в коем случае нельзя понимать как траекторию электрона. В квантовой механике понятие траектории лишено общепринятого смысла), квадрат модуля которой определяет вероятность dW того, что частица будет обнаружена в пределах элементарного объема dV:  или, другими словами, дает плотность вероятности (вероятность, приходящуюся на единицу объема) нахождения частицы в данном месте пространства, т.е. .

С другой стороны, квантовые числа n, l, m определяют некоторые физические величины, характеризующие состояния атома водорода. Так, возможные значения энергии атома определяется точно так же, как и в случае модели Бора-Зоммерфельда, а именно: (13)

Момент импульса и его проекции определяются следующим образом: (14) (15). Чисто внешне приведенные результаты похожи на результаты теории Зоммерфельда. Здесь также можно говорить о вырождении энергетических уровней: уровень с данным n n-кратно вырожден по l, состояние с данным l (2l+1)-кратно вырождено по m. В целом же, уровень с данным n n2 – кратно вырожден по l и т. Возможные состояния атома водорода (результат квантово-механического рассмотрения) и спектроскопические обозначения состояний даны на рис. 6, а и 6, б, соответственно.  

l

0

1

2

3

4

Состояние

s

p

d

f

g

a)

б)

Р и с. 6

Однако результаты этих двух теорий имеют и существенные различия. Так, в квантовой теории нельзя говорить о траектории электрона; величину весьма утрированно (и не совсем корректно) можно трактовать как распределение электрического заряда электрона около ядра; плотность такого электронного облака выше там, где величина имеет большее значение.

При квантовомеханическом рассмотрении атома водорода оказывается, что при различных значениях n квантовое число l может принимать, в частности, нулевое значение, т.е. в состояниях с определенными, отличными от нуля, значениями энергии атома Еn величина момента импульса электрона может оказаться равной нулю (такие случаи соответствуют сферически симметричным волновым функциям). Кроме того, из сравнения выражений (14) и (15) следует, что, при разрешенных взаимосвязях между квантовыми числами l и m, величина проекции момента импульса Nz никогда не может достигать величины самого момента N. Эти и подобные им эффекты, согласующиеся с экспериментом, не имеют аналога в классической физике и поэтому называются квантовыми эффектами.

ВЫПОЛНЕНИЕ РАБОТЫ

В данной работе источником излучения является водородная газоразрядная трубка. Спектр анализируется визуально с помощью монохроматора УМ-2.

  1.  С помощью монохроматора и градуировочного графика определить длины волн водородных линий Н, Н, Н.
  2.  Для каждой из наблюдаемых линий вычислить значение постоянной Ридберга, определить ее среднее значение по всем измерениям.

 

Вывод: был получен спектр атома водорода, также вычислена экспериментально постоянная Ридберга.


 

А также другие работы, которые могут Вас заинтересовать

42280. Исследование индуктивно-связанных цепей 288.5 KB
  Целью работы является экспериментальное определение параметров двух индуктивно связанных катушек и проверка основных соотношений индуктивно связанных цепей при различных соединениях катушек. Подготовка к работе Схема замещения двух индуктивно связанных катушек удовлетворительно учитывающая электромагнитные процессы в диапазоне низких и средних частот представлена на рис. 1 где L1 R1 и L2 R2 индуктивности и сопротивления соответственно первой и второй...
42281. ЗАКОНЫ СТОЛКНОВЕНИЙ 931 KB
  Обозначим массы шаров и скорости шаров до удара и а скорости после удара и рис. 5 Скорости шаров после удара получим умножив 5 на и вычтя результат из 3 а затем умножив 5 на и сложив результат с 3: . Рассмотрим неупругое столкновение двух шаров массами и скорости которых до удара и . Установка предназначена для измерения скорости двух подвижных...
42282. ОСНОВНОЕ УРАВНЕНИЕ ДИНАМИКИ ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ ВОКРУГ НЕПОДВИЖНОЙ ОСИ 981 KB
  Изучение динамики вращательного движения твердого тела. Исследование зависимости угла поворота твердого тела от времени, экспериментальная проверка основного уравнения динамики вращательного движения, определение момента инерции твердого тела как коэффициента пропорциональности в основном уравнении
42283. ИЗУЧЕНИЕ УПРУГИХ СВОЙСТВ ПРУЖИНЫ 2.68 MB
  Если пружина находится в равновесии то силы действующие на любую часть пружины уравновешены рис. По закону Гука сила упругости пропорциональна деформации пружины : 1 где проекция силы упругости на ось направленную вдоль оси пружины рис. Рис. Одной из упругих характеристик...
42284. ЦЕНТРОБЕЖНАЯ СИЛА 843 KB
  Исследование зависимости величины центробежной силы от массы тела угловой скорости и расстояния до оси вращения. Вместе с платформой вращается привязанная к оси вращения небольшая тележка. Рассмотрим небольшой груз массы m подобно тележке привязанный к оси вращения нерастяжимой невесомой нитью и вращающийся вместе с платформой.1 этот груз схематически изображён слева от оси вращения.
42285. ИЗУЧЕНИЕ КОЛЕБАНИЙ СВЯЗАННЫХ МАЯТНИКОВ 1.67 MB
  Измерение собственных частот колебаний и частоты биений экспериментальная проверка соотношения между этими частотами. Теоретическая часть Биения Гармоническими колебаниями называются колебания которые описываются формулой 1 где координата колеблющейся точки амплитуда колебаний циклическая частота период колебаний начальная фаза. Амплитуда колебаний и начальная фаза определяются начальными условиями:...
42286. ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ ТВЕРДОГО ТЕЛА И ПРОВЕРКА ТЕОРЕМЫ ШТЕЙНЕРА 1.78 MB
  Теоретическая часть Момент инерции это величина зависящая от распределения масс в теле и являющаяся мерой инертности тела при вращательном движении. Момент инерции тела относительно оси вращения определяется выражением 1 где элементарные точечные массы на...
42287. КОЛЕБАНИЯ СТРУНЫ 6.2 MB
  Исследование зависимости частоты колебаний струны от силы натяжения длины и линейной плотности материала струны. Оборудование: Установка включающая в себя устройство для натяжения струны с динамометром измерительную линейку с подвижными порожками электрическую лампочку с держателем фотоэлемент низкочастотный усилитель осциллограф и универсальный счетчик; резиновый молоток; набор струн. Колебания струны как пример стоячей волны На практике стоячие волны возникают при отражении волн от преград: падающая на преграду волна и бегущая ей...
42288. Уравнение состояния идеального газа 2.55 MB
  Оборудование: Установка включающая в себя газовый шприц в стеклянном корпусе нагреватель датчик давления датчик температуры блок управления Cobr3 компьютер. Чтобы показать это раскроем физический смысл давления газа и температуры. Существует два определения температуры: одно использует термодинамический подход другое молекулярнокинетический. В термодинамике понятие температуры вводится как характеристика степени нагретости вещества.