2561

Измерение моментов инерции тел

Лабораторная работа

Физика

Цель работы: измерить величину момента инерции осесимметричных тела (коаксиального цилиндра) методом крутильных колебаний, провести сравнение измеренных значений с теоретическими предсказанными значениями момента инерции.

Русский

2013-01-06

69.86 KB

61 чел.

Измерение моментов инерции тел

Цель работы: измерить величину момента инерции осесимметричных тела (коаксиального цилиндра) методом крутильных колебаний, провести сравнение измеренных значений с теоретическими предсказанными значениями момента инерции.

КРАТКАЯ ТЕОРИЯ.

  1.  Значение момента инерции тела относительно некоторой оси (осевого момента инерции) может быть рассчитано по формуле

,  (1)

где  - плотность тела, а R - расстояние от от элементарного объема dV до оси. Вычислим с помощью этой формулы величину момента инерции коаксиального цилиндра высотой h, имеющие внутренний и внешний радиусы соответственно R1 и R2 относительно его оси симметрии (рис.1).

Направим ось Z системы координат вдоль оси симметрии цилиндра, а начало системы координат (точка 0) поместим на оси в середине высоты, т.е. в центре тяжести цилиндра. Разобьем коаксиальный цилиндр на тонкие диски высотой dz. На таком диске выделим узкий кольцевой слой радиусом R и шириной dR. В свою очередь на этом кольцевом слое выделим двумя радиусами, угол между которыми составляет малую величину d, кольцевой сектор. Поскольку размеры этого сектора очень малы, мы не допустим большой ошибки, если его объем dV будем рассчитывать как объем куба со сторонами Rd, dR и dZ. Таким образом, элементарно малый объем можно представить в следующем виде: dV=RdRddZ

Интегрирование по всему объему цилиндра эквивалентно тройному интегрированию: по  в пределах от 0 до 2, по Z - в пределах от -h/2 до h/2, и по R в пределах от R1 до R2. Таким образом, интеграл (1) можно записать в следующем виде:

.

Интегрирование по  дает просто множитель 2, то есть

Если предположить, что тело однородно (=Const), то после интегрирования по z и R, получаем

Но величина (R22-R12) - это площадь основания цилиндра, (R22-R12)h - это объем цилиндра, а (R22-R12)h - это масса цилиндра M. Таким образом, для расчета момента инерции однородного коаксиального цилиндра получаем простую формулу:

.  (2)

Итак, зная массу коаксиального цилиндра, а также его внутренний и внешний диаметр, можно определить его момент инерции относительно оси симметрии.

Необходимо отметить следующее обстоятельство. Формула (2) применима для определения величины момента инерции цилиндра только в том случае, если заранее известно, что цилиндр однороден. Такое предположение (об однородности) отсутствует в методе крутильных колебаний.

2. Расчет интеграла в формуле (1) достаточно прост для тел, обладающих некоторой симметрией. Для тел произвольной формы подобное интегрирование в общем случае невозможно. В этой ситуации для определения момента инерции можно воспользоваться наблюдением какого-либо движения, одна из характеристик которого известным образом зависит от момента инерции. В данной работе такой характеристикой является период крутильных колебаний. Метод крутильных колебаний позволяет определять значения моментов инерции для тел произвольной формы, имеющих произвольное распределение плотности по объему.

Крутильными колебаниями называют колебания, которые совершает тело, прикрепленное к стержню (или нити), если стержень (или нить) подвергнуть деформации кручения. Известно, что когда колебания совершает тело, подвешенное к пружине, подверженной деформации сжатия (растяжения), то тело в этом случае движется поступательно. Если деформации малы, т.е. справедлив закон Гука, то период таких колебаний Т определяется по формуле , где m - масса тела и k - жесткость пружины при деформации сжатия (растяжения).

При крутильных колебаниях тело как бы совершает незавершенные вращения относительно некоторой оси. Поэтому в формулу для периода колебаний вместо массы входит момент инерции относительно оси вращения, а вместо жесткости k -жесткость по отношению к деформации кручения . Таким образом, формула для периода крутильных колебаний приобретает вид

    (3)

Связь между периодом колебаний и моментом инерции, задаваемая формулой (3), позволяет в принципе определить величину J из измерений периода Т, если известно значение . Однако значение  обычно известно с невысокой точностью, поэтому способ измерения J, основанный на соотношении (3) имеет большую систематическую погрешность.

Систематическую погрешность измерений, обусловленную погрешностью , можно исключить, если метод крутильных колебаний использовать для определения отношения моментов инерции тел прикрепленных к одной и той же нити. Очевидно, что это отношение не зависит от величины . На самом деле, пусть к нити прикреплено некоторое тело, имеющее момент инерции относительно оси, совпадающей с осью вращения, равной J0. Период колебаний Т0 такого тела равен

 (4)

Если к первому телу прикрепить другое тело, момент инерции которого относительно оси вращения равен J , то момент инерции такой системы будет равен сумме J+J0 . Соответственно изменится и период колебаний такой системы.

 (5)

Разделив (5) на (4), найдем . Отсюда

(6)

Из формулы (6) видно, что систематическая погрешность определения отношения J/J0 зависит только от систематических погрешностей измерения периодов колебаний Т и Т0, которые у современных секундомеров малы. Очевидно, что если величина J0 относительно оси вращения известна из каких-либо других соображений, то, вычислив соотношение J/J0 по формуле (6), легко определить момент инерции J относительно той же оси вращения.

МЕТОДИКА ЭКСПЕРИМЕНТА

Установка для измерения момента инерции методом крутильных колебаний представляет собой, собранные на массивном основании колонку для крепления исследуемых образцов и миллисекундомера. На колонке при помощи прижимных винтов размещаются три кронштейна. Верхний и нижний кронштейны имеют зажимы, Служащие для закрепления стальной проволоки, к которой подвешивается рамка с платформой в виде тонкого диска. Момент инерции рамки с платформой J0 относительно оси вращения известен. Его значение приведено на установке. Конструкция рамки такова, что позволяет размещать на платформе различные тела, момент инерции которых необходимо измерить. На среднем кронштейне закреплена стальная плита, которая служит основанием фотоэлектрическому датчику, электромагниту и угловой шкале. Электромагнит может изменять положение на плите, а его положение относительно фотодатчика показывает на угловой шкале стрелка, прикрепленная к электромагниту.

На лицевой панели миллисекундомера находятся:

- клавиша "Сеть" - включатель сети. Нажатие этой клавиши вызывает включение питающего напряжения. При этом на двух цифровых табло должны высвечиваться нули, а также должна гореть лампочка фотодатчика;

- клавиша "Сброс" - сброс секундомера. Нажатие этой клавиши вызывает сброс схем блока измерений и генерирование сигнала, разрешающего измерение;

- клавиша "Стоп" - окончание измерений. При нажатии этой клавиши генерируется сигнал на окончание счета времени;

- клавиша "Пуск" - управление электромагнитом. Нажатие этой клавиши вызывает отключение тока, питающего электромагнит.

На лицевой панели находится также два цифровых табло. На одном высвечивается число периодов колебаний рамки, на другом - время, в течение которого эти колебания совершаются.

При нажатии клавиши "Сеть" секундомер устанавливается в начальное состояние (нули на цифровых индикаторах) и блокируется схема формирования импульсов. Эта блокировка снимается сигналом, который вырабатывается при нажатии клавиши "Сброс". Нажатие клавиши "Пуск" освобождает электромагнит, и начинаются крутильные колебания маятника. В момент первого прерывания светового потока, падающего на фототранзистор от лампочки, генерируется электрический импульс, который подключает к счетчику времени кварцевый генератор. Счетчик подсчитывает число импульсов, следующих с кварцевого генератора с частотой 10 Кгц. Одновременно другой счетчик подсчитывает каждый (следующий после первого) нечетный импульс. Прохождение каждого такого нечетного импульса соответствует одному колебанию и показание цифрового табло счетчика периодов изменится на единицу.

При нажатии клавиши "Стоп" формируется сигнал, который подготавливает схемы к концу счета. Полностью счет прекращается в момент генерации очередного нечетного импульса фотодатчиком. При этом на цифровых табло высвечивается число колебаний и время, в течение которого они совершились. Систематическая погрешность измерения времени составляет 0,02%.

Таким образом, методика измерения осевого момента инерции тела сводится к следующему. Вначале следует убедиться в применимости формулы (6), т.е. убедиться в том, что колебания слабо затухающие. После этого определить период колебания пустой платформы и платформы, с установленным на нее телом. Затем рассчитать J образца по формуле (6).

Описанный метод пригоден для определения момента инерции тела произвольной формы относительно оси колебаний. В частном случае, когда тело установлено на платформе так, что ось колебаний совпадает с осью симметрии тела, то методом крутильных колебаний определяется момент инерции относительно оси симметрии.

ВЫПОЛНЕНИЕ РАБОТЫ И УСЛОВИЯ ЭКСПЕРИМЕНТА

1. Включить прибор нажатием клавиши Сеть”, убедиться в том, что индикаторы измерителя высвечивают нули, и светится лампочка фотодатчика. Установить электромагнит в некоторое положение и при помощи его зафиксировать рамку с платформой.

2. Убедиться в том, что колебания крутильного маятника являются слабо затухающими. Для этого, нажав последовательно клавиши Сброс” и Пуск”, определите число колебаний N, за которое амплитуда уменьшается в 2-3 раза. Если N>10, то затухание мало и можно пользоваться формулой (4). Измерение N провести для пустой платформы и для платформы с установленным на нее кольцом.

3. Определить время t0, в течение которого рамка с пустой платформой совершит N колебаний. Измерения следует провести при различных N (всего 5-7 раз). Очевидно, что Т0=t0/N. Данные занести в таблицу. Рассчитать среднее значение, случайную и систематическую погрешности.

4. Поместить на платформу исследуемый образец. Следить за тем, чтобы центр кольца совпадал с центром платформы. Измерить период колебаний Т, так же как и в пункте 3.

5. Рассчитать момент инерции кольца по формуле (6).

6. Определить массу кольца М. Для этого взвесить кольцо на технических весах дважды, располагая его на различных чашках. Найти среднее этих измерений, рассчитать случайную погрешность, систематическую погрешность взвешивания считать равной массе наименьшего используемого разновеса.

7. Измерить внутренний и внешний радиусы кольца с помощью штангенциркуля. Измерение проводить не менее 5 раз. Рассчитать среднее значение R1 и R2, их случайные и систематические погрешности.

8. Рассчитать момент инерции кольца по формуле (2).

ОБРАБОТКА РЕЗУЛЬТАТОВ ЭКСПЕРИМЕНТА

Величины моментов инерции кольца, измеренные как методом крутильных колебаний, так и методом, использующим формулу (2), является результатами косвенных измерений. Получим формулы для расчета погрешности измерений величин J, полученных этими методами. Для метода крутильных колебаний, в соответствии с правилами расчета погрешности косвенных измерений и формулой (6), получаем

Разделив обе части полученного выражения на J, получаем

. (7)

Подставляя в (7) вместо J0, T0 и T вначале случайные, а затем систематические погрешности измеряемых впрямую величин, рассчитываются погрешности J, обусловленные соответственно случайными (oJ) и систематическими (c J) погрешностями прямых измерений. Полная погрешность равна .

Аналогично выводится формула и для расчета погрешности измерения методом, использующим формулу (5)

или . (8)

Так же, как и раньше, по формуле (8) рассчитываются погрешности, обусловленные случайными и систематическими погрешностями прямых измерений, а затем и полная погрешность.

После вычисления погрешностей можно провести корректное сравнение результатов измерения величин момента инерции, полученных разными способами. В том случае, если результаты измерений различаются на величину большую, чем погрешности эксперимента, необходимо сделать вывод о возможных причинах такого расхождения.


 

А также другие работы, которые могут Вас заинтересовать

40173. АКТИВНЫЕ ФИЛЬТРЫ 83 KB
  Необходимо чтобы ОУ охваченный ООС обеспечивал заданный коэффициент усиления как в полосе пропускания. Основной параметр: полоса пропускания которая определяется по уровню падения коэффициента передачи в 141 раза на 3дб. Ширина полосы пропускания изменяется варьированием RC. Коэффициент передачи в полосе пропускания постоянный и равен Кио.
40174. ГЕНЕРАТОРЫ 102 KB
  По форме выходного напряжения классифицируются: генераторы гармонических колебаний и генераторы негармонических колебаний импульсные или релаксацоинные. Ku=U2 U1=Kuωejφkω где Kuω=U2ω U1ω модуль коэффициента усиления на частоте ω; φkω=ψ2ωψ1ω сдвиг фаз между выходным и входным напряжениями Ku на частоте ω; Bu=U1 U2=Buωejφbω где Buω=U1ω U2ω модуль коэффициента передачи на частоте ω; φbω=ψ1ωψ2ω сдвиг фаз между выходным и входным напряжениями четырёхполюсника Bu на частоте ω. Если на входе...
40175. ИСТОЧНИКИ ВТОРИЧНОГО ЭЛЕКТРОПИТАНИЯ 269 KB
  Классификация: 1 устройства согласования уровня напряжения служат для преобразования постоянного или переменного напряжения одного уровня в напряжение другого уровня. 2 устройства согласования стабильности напряжения: сглаживающие фильтры служат для стабилизации мгновенного значения пульсирующего напряжения тока и стабилизаторы служат для стабилизации среднего значения выходного тока напряжения или мощности. 3 устройства согласования частоты: выпрямители преобразователи напряжения переменного тока в напряжение содержащее...
40176. Портфельное инвестирование 24.5 KB
  Если у вас куплены акции двух и более разных компаний из разных отраслей то такое инвестирование можно назвать портфельным. Чтобы достичь успеха в портфельном инвестировании необходимо грамотно подбирать бумаги компаний. Если инвестор нацелен на получение максимальной прибыли то и риски будут весьма велики в такой портфель войдет большинство примерно 8090 процентов акции молодых динамично развивающихся компаний с большими перспективами роста. Когда вы нацелены на хорошую прибыль но не готовы принять на себя большие риски тогда...
40177. Финансовые риски, связанные с вложениями определение, классификация 32 KB
  Финансовые риски связанные с вложениями определение классификация. Финансовые риски связаны с вероятностью потерь финансовых ресурсов т. Под финансовыми рисками понимается вероятность возникновения непредвиденных финансовых потерь снижения прибыли доходов потери капитала и т. Финансовые риски подразделяются на три вида: 1.
40178. Дивидендная политика корпорации 22.5 KB
  Дивидендная политика корпорации Дивидендная политика политика акционерного общества в области распределения прибыли компании то есть распределения дивидендов между держателями акций. Дивидендная политика формируется советом директоров. Термин дивидендная политика в принципе связан с распределением прибыли в акционерных обществах. В связи с этим в финансовом менеджменте используется более широкая трактовка термина дивидендная политика под которой понимают механизм формирования доли прибыли выплачиваемой собственнику в соответствии с...
40179. Анализ и планирование в системе управления финансами предприятия 33 KB
  Анализ и планирование в системе управления финансами предприятия. это вопервых определение будущего предприятия и его структурных подразделений вовторых проектирование желаемых результатов деятельности предприятия и втретьих выбор методов и средств ресурсов и определение последовательности действий в достижении желаемых результатов. Последовательность планирования обычно такова: определение целей; моделирование будущего состояния предприятия; определение способов его достижения; декомпозиция заданных желаемых результатов...
40180. Сущность и назначение финансового анализа в организации. Оценка финансового состояния 26 KB
  Сущность и назначение финансового анализа в организации. Оценка финансового состояния Неотъемлемой частью финансовой работы на предприятии являются финансовый анализ и оценка финансового состояния предприятия. Основной целью финансового анализа является установление и определение финансового положения предприятия. Задачами анализа выступают: выявление произошедших за период изменений значений финансовых показателей; определение наиболее вероятных тенденций изменения финансового состояния предприятий; определение факторов влияющих на...
40181. Финансовое планирование на предприятии 35.5 KB
  Финансовое планирование на предприятии Финансовое планирование выбор целей по реальности их достижения с имеющимися финансовыми ресурсами в зависимости от внешних условий и согласование будущих финансовых потоков выражается в составлении и контроле за выполнением планов формирования доходов и расходов учитывающих текущее финансовое состояние выраженные в денежном эквиваленте цели и средства их достижения. В рыночной экономике финансовое планирование собственной деятельности может осуществляться отдельным индивидом семьёй организацией...