2561

Измерение моментов инерции тел

Лабораторная работа

Физика

Цель работы: измерить величину момента инерции осесимметричных тела (коаксиального цилиндра) методом крутильных колебаний, провести сравнение измеренных значений с теоретическими предсказанными значениями момента инерции.

Русский

2013-01-06

69.86 KB

61 чел.

Измерение моментов инерции тел

Цель работы: измерить величину момента инерции осесимметричных тела (коаксиального цилиндра) методом крутильных колебаний, провести сравнение измеренных значений с теоретическими предсказанными значениями момента инерции.

КРАТКАЯ ТЕОРИЯ.

  1.  Значение момента инерции тела относительно некоторой оси (осевого момента инерции) может быть рассчитано по формуле

,  (1)

где  - плотность тела, а R - расстояние от от элементарного объема dV до оси. Вычислим с помощью этой формулы величину момента инерции коаксиального цилиндра высотой h, имеющие внутренний и внешний радиусы соответственно R1 и R2 относительно его оси симметрии (рис.1).

Направим ось Z системы координат вдоль оси симметрии цилиндра, а начало системы координат (точка 0) поместим на оси в середине высоты, т.е. в центре тяжести цилиндра. Разобьем коаксиальный цилиндр на тонкие диски высотой dz. На таком диске выделим узкий кольцевой слой радиусом R и шириной dR. В свою очередь на этом кольцевом слое выделим двумя радиусами, угол между которыми составляет малую величину d, кольцевой сектор. Поскольку размеры этого сектора очень малы, мы не допустим большой ошибки, если его объем dV будем рассчитывать как объем куба со сторонами Rd, dR и dZ. Таким образом, элементарно малый объем можно представить в следующем виде: dV=RdRddZ

Интегрирование по всему объему цилиндра эквивалентно тройному интегрированию: по  в пределах от 0 до 2, по Z - в пределах от -h/2 до h/2, и по R в пределах от R1 до R2. Таким образом, интеграл (1) можно записать в следующем виде:

.

Интегрирование по  дает просто множитель 2, то есть

Если предположить, что тело однородно (=Const), то после интегрирования по z и R, получаем

Но величина (R22-R12) - это площадь основания цилиндра, (R22-R12)h - это объем цилиндра, а (R22-R12)h - это масса цилиндра M. Таким образом, для расчета момента инерции однородного коаксиального цилиндра получаем простую формулу:

.  (2)

Итак, зная массу коаксиального цилиндра, а также его внутренний и внешний диаметр, можно определить его момент инерции относительно оси симметрии.

Необходимо отметить следующее обстоятельство. Формула (2) применима для определения величины момента инерции цилиндра только в том случае, если заранее известно, что цилиндр однороден. Такое предположение (об однородности) отсутствует в методе крутильных колебаний.

2. Расчет интеграла в формуле (1) достаточно прост для тел, обладающих некоторой симметрией. Для тел произвольной формы подобное интегрирование в общем случае невозможно. В этой ситуации для определения момента инерции можно воспользоваться наблюдением какого-либо движения, одна из характеристик которого известным образом зависит от момента инерции. В данной работе такой характеристикой является период крутильных колебаний. Метод крутильных колебаний позволяет определять значения моментов инерции для тел произвольной формы, имеющих произвольное распределение плотности по объему.

Крутильными колебаниями называют колебания, которые совершает тело, прикрепленное к стержню (или нити), если стержень (или нить) подвергнуть деформации кручения. Известно, что когда колебания совершает тело, подвешенное к пружине, подверженной деформации сжатия (растяжения), то тело в этом случае движется поступательно. Если деформации малы, т.е. справедлив закон Гука, то период таких колебаний Т определяется по формуле , где m - масса тела и k - жесткость пружины при деформации сжатия (растяжения).

При крутильных колебаниях тело как бы совершает незавершенные вращения относительно некоторой оси. Поэтому в формулу для периода колебаний вместо массы входит момент инерции относительно оси вращения, а вместо жесткости k -жесткость по отношению к деформации кручения . Таким образом, формула для периода крутильных колебаний приобретает вид

    (3)

Связь между периодом колебаний и моментом инерции, задаваемая формулой (3), позволяет в принципе определить величину J из измерений периода Т, если известно значение . Однако значение  обычно известно с невысокой точностью, поэтому способ измерения J, основанный на соотношении (3) имеет большую систематическую погрешность.

Систематическую погрешность измерений, обусловленную погрешностью , можно исключить, если метод крутильных колебаний использовать для определения отношения моментов инерции тел прикрепленных к одной и той же нити. Очевидно, что это отношение не зависит от величины . На самом деле, пусть к нити прикреплено некоторое тело, имеющее момент инерции относительно оси, совпадающей с осью вращения, равной J0. Период колебаний Т0 такого тела равен

 (4)

Если к первому телу прикрепить другое тело, момент инерции которого относительно оси вращения равен J , то момент инерции такой системы будет равен сумме J+J0 . Соответственно изменится и период колебаний такой системы.

 (5)

Разделив (5) на (4), найдем . Отсюда

(6)

Из формулы (6) видно, что систематическая погрешность определения отношения J/J0 зависит только от систематических погрешностей измерения периодов колебаний Т и Т0, которые у современных секундомеров малы. Очевидно, что если величина J0 относительно оси вращения известна из каких-либо других соображений, то, вычислив соотношение J/J0 по формуле (6), легко определить момент инерции J относительно той же оси вращения.

МЕТОДИКА ЭКСПЕРИМЕНТА

Установка для измерения момента инерции методом крутильных колебаний представляет собой, собранные на массивном основании колонку для крепления исследуемых образцов и миллисекундомера. На колонке при помощи прижимных винтов размещаются три кронштейна. Верхний и нижний кронштейны имеют зажимы, Служащие для закрепления стальной проволоки, к которой подвешивается рамка с платформой в виде тонкого диска. Момент инерции рамки с платформой J0 относительно оси вращения известен. Его значение приведено на установке. Конструкция рамки такова, что позволяет размещать на платформе различные тела, момент инерции которых необходимо измерить. На среднем кронштейне закреплена стальная плита, которая служит основанием фотоэлектрическому датчику, электромагниту и угловой шкале. Электромагнит может изменять положение на плите, а его положение относительно фотодатчика показывает на угловой шкале стрелка, прикрепленная к электромагниту.

На лицевой панели миллисекундомера находятся:

- клавиша "Сеть" - включатель сети. Нажатие этой клавиши вызывает включение питающего напряжения. При этом на двух цифровых табло должны высвечиваться нули, а также должна гореть лампочка фотодатчика;

- клавиша "Сброс" - сброс секундомера. Нажатие этой клавиши вызывает сброс схем блока измерений и генерирование сигнала, разрешающего измерение;

- клавиша "Стоп" - окончание измерений. При нажатии этой клавиши генерируется сигнал на окончание счета времени;

- клавиша "Пуск" - управление электромагнитом. Нажатие этой клавиши вызывает отключение тока, питающего электромагнит.

На лицевой панели находится также два цифровых табло. На одном высвечивается число периодов колебаний рамки, на другом - время, в течение которого эти колебания совершаются.

При нажатии клавиши "Сеть" секундомер устанавливается в начальное состояние (нули на цифровых индикаторах) и блокируется схема формирования импульсов. Эта блокировка снимается сигналом, который вырабатывается при нажатии клавиши "Сброс". Нажатие клавиши "Пуск" освобождает электромагнит, и начинаются крутильные колебания маятника. В момент первого прерывания светового потока, падающего на фототранзистор от лампочки, генерируется электрический импульс, который подключает к счетчику времени кварцевый генератор. Счетчик подсчитывает число импульсов, следующих с кварцевого генератора с частотой 10 Кгц. Одновременно другой счетчик подсчитывает каждый (следующий после первого) нечетный импульс. Прохождение каждого такого нечетного импульса соответствует одному колебанию и показание цифрового табло счетчика периодов изменится на единицу.

При нажатии клавиши "Стоп" формируется сигнал, который подготавливает схемы к концу счета. Полностью счет прекращается в момент генерации очередного нечетного импульса фотодатчиком. При этом на цифровых табло высвечивается число колебаний и время, в течение которого они совершились. Систематическая погрешность измерения времени составляет 0,02%.

Таким образом, методика измерения осевого момента инерции тела сводится к следующему. Вначале следует убедиться в применимости формулы (6), т.е. убедиться в том, что колебания слабо затухающие. После этого определить период колебания пустой платформы и платформы, с установленным на нее телом. Затем рассчитать J образца по формуле (6).

Описанный метод пригоден для определения момента инерции тела произвольной формы относительно оси колебаний. В частном случае, когда тело установлено на платформе так, что ось колебаний совпадает с осью симметрии тела, то методом крутильных колебаний определяется момент инерции относительно оси симметрии.

ВЫПОЛНЕНИЕ РАБОТЫ И УСЛОВИЯ ЭКСПЕРИМЕНТА

1. Включить прибор нажатием клавиши Сеть”, убедиться в том, что индикаторы измерителя высвечивают нули, и светится лампочка фотодатчика. Установить электромагнит в некоторое положение и при помощи его зафиксировать рамку с платформой.

2. Убедиться в том, что колебания крутильного маятника являются слабо затухающими. Для этого, нажав последовательно клавиши Сброс” и Пуск”, определите число колебаний N, за которое амплитуда уменьшается в 2-3 раза. Если N>10, то затухание мало и можно пользоваться формулой (4). Измерение N провести для пустой платформы и для платформы с установленным на нее кольцом.

3. Определить время t0, в течение которого рамка с пустой платформой совершит N колебаний. Измерения следует провести при различных N (всего 5-7 раз). Очевидно, что Т0=t0/N. Данные занести в таблицу. Рассчитать среднее значение, случайную и систематическую погрешности.

4. Поместить на платформу исследуемый образец. Следить за тем, чтобы центр кольца совпадал с центром платформы. Измерить период колебаний Т, так же как и в пункте 3.

5. Рассчитать момент инерции кольца по формуле (6).

6. Определить массу кольца М. Для этого взвесить кольцо на технических весах дважды, располагая его на различных чашках. Найти среднее этих измерений, рассчитать случайную погрешность, систематическую погрешность взвешивания считать равной массе наименьшего используемого разновеса.

7. Измерить внутренний и внешний радиусы кольца с помощью штангенциркуля. Измерение проводить не менее 5 раз. Рассчитать среднее значение R1 и R2, их случайные и систематические погрешности.

8. Рассчитать момент инерции кольца по формуле (2).

ОБРАБОТКА РЕЗУЛЬТАТОВ ЭКСПЕРИМЕНТА

Величины моментов инерции кольца, измеренные как методом крутильных колебаний, так и методом, использующим формулу (2), является результатами косвенных измерений. Получим формулы для расчета погрешности измерений величин J, полученных этими методами. Для метода крутильных колебаний, в соответствии с правилами расчета погрешности косвенных измерений и формулой (6), получаем

Разделив обе части полученного выражения на J, получаем

. (7)

Подставляя в (7) вместо J0, T0 и T вначале случайные, а затем систематические погрешности измеряемых впрямую величин, рассчитываются погрешности J, обусловленные соответственно случайными (oJ) и систематическими (c J) погрешностями прямых измерений. Полная погрешность равна .

Аналогично выводится формула и для расчета погрешности измерения методом, использующим формулу (5)

или . (8)

Так же, как и раньше, по формуле (8) рассчитываются погрешности, обусловленные случайными и систематическими погрешностями прямых измерений, а затем и полная погрешность.

После вычисления погрешностей можно провести корректное сравнение результатов измерения величин момента инерции, полученных разными способами. В том случае, если результаты измерений различаются на величину большую, чем погрешности эксперимента, необходимо сделать вывод о возможных причинах такого расхождения.


 

А также другие работы, которые могут Вас заинтересовать

52536. Проект «Я дитина всесвіту» 947.5 KB
  Вірно діти це вода. В казках мертва вода заживляла рани. Глибока вона там а вода знай в ній холодна джерельна студена. Журавель напоїв хлопчика джерельною водою а потім на своїх широких крилах відніс хлопчика додому і сказав: Запамятай вода жива її треба берегти Хлопчик подякував і повторив: вода жива.
52537. Всі ми родом із дитинства. Подорож в українську минувшину. Живопис на склі «Ікона святого Миколая» 87.5 KB
  Миколай народився в Патарі тепер Туреччина біля 280 р. Миколай і потайки вечором кинув у відкрите вікно кімнати мішечок з золотом. І знову Святий Миколай підкинув торбинку грошей так щоб ніхто того не бачив. Коли прийшов час наймолодшій дочці виходити заміж а грошей не булоі її чекала неволя батько дівчат заховався біля хати; і коли Святий Миколай кинув знову мішечок з золотом батько схопив його за руку.
52538. Дитинство Ісуса Христа 116 KB
  Мета: ознайомити учнів з дитинством Спасителя, вказуючи на Його чесноти; розвивати бажання брати собі за взірець Христа; виховувати послух, покірність та повагу до батьків.
52539. Всі ми родом із дитинства 97 KB
  Евеліна Хромченко Дитинство Дитинствоказка мов чарівна мить Там завжди сонячно і світло. Надія Красоткіна Дитинство це коли день починається з першим променем сонця звуком тихих маминих кроків запахом теплого хліба співом птахів і триває довгодовго це коли дерева великі а ти внизу і помічаєш так багато: і мурашки і бджолу на квітці і пухнасту гусеницю і чуєш як росте трава і можеш залізти на найвище дерево і переплести саму широку річку і все можеш зробити сам. Варто подумати про дитинство і память підкине дивні...
52540. Свято здоровя 43 KB
  Підвищувати відповідальність за особисте здоровя, здоровя родини; пропагувати і заохочувати до співпраці дітей та батьків; розвивати і зміцнювати в учнів почуття прекрасного в побуті, працьовитість, повагу до звичаїв і традицій рідного народу; виховувати повагу в особистих стосунках, почуття колективізму та взаємодопомоги.
52541. Сценарій свята для учнів 2-х класів «Різдвяне диво» 81 KB
  Заходять колядники звіздар ангел зірка коза дохтур Звіздар. Де коза ходить там жито родить Де коза ногою там жито копою Де коза рогом там жито стогом. Коза скаче а потім падає Пуць Коза впала нежива стала Ой Ой Яка добра тваринка була Що ж то робити Усі. Де тут хто тут пацієнт Виліковую в момент Робить козі укол коза оживає встає танцює танець всі плескають у долоні Усі.
52542. Ти наше диво калинове, кохана українська мово 61 KB
  Ведуча Мова А що таке мова Народ говорить слово до слова зложиться мова а Т . Ведучий Найбільше і найдорожче добро кожного народу це його мова ота жива схованка людського духу його багата скарбниця в яку народ складає і своє давнє життя і свої сподіванки розум досвід почуття. Добута з надр далеких поколінь Ти скарб наш вічний українська мова. Мова ...
52543. ДИВОСВІТ. Методичні рекомендації 8.27 MB
  Методичні рекомендації «Дивосвіт» вихователя Менського дошкільного закладу «Сонечко» Шевель Наталії Володимирівни допоможуть педагогічним працівникам дошкільних закладів у створенні та облаштуванні розвивального простору в групах дошкільних навчальних закладів.
52544. Методичний проект «Центр дитячої творчості Дивосвіт як заклад життєвої компетентності» 58.5 KB
  Підвищити рівень орієнтованності навчально виховного процесу закладу на розвиток життєвої компетентності особистості учня. Націлити педагогів закладу до розробки та впровадження авторських програм навчальних посібників нового покоління 3. Переорієтнувати виховну систему закладу відповідно до вимог часуформування через освіту здорового способу життя дітей та молоді інтеграцію освіти до європейського та світового освітнього простору 5.