2561

Измерение моментов инерции тел

Лабораторная работа

Физика

Цель работы: измерить величину момента инерции осесимметричных тела (коаксиального цилиндра) методом крутильных колебаний, провести сравнение измеренных значений с теоретическими предсказанными значениями момента инерции.

Русский

2013-01-06

69.86 KB

61 чел.

Измерение моментов инерции тел

Цель работы: измерить величину момента инерции осесимметричных тела (коаксиального цилиндра) методом крутильных колебаний, провести сравнение измеренных значений с теоретическими предсказанными значениями момента инерции.

КРАТКАЯ ТЕОРИЯ.

  1.  Значение момента инерции тела относительно некоторой оси (осевого момента инерции) может быть рассчитано по формуле

,  (1)

где  - плотность тела, а R - расстояние от от элементарного объема dV до оси. Вычислим с помощью этой формулы величину момента инерции коаксиального цилиндра высотой h, имеющие внутренний и внешний радиусы соответственно R1 и R2 относительно его оси симметрии (рис.1).

Направим ось Z системы координат вдоль оси симметрии цилиндра, а начало системы координат (точка 0) поместим на оси в середине высоты, т.е. в центре тяжести цилиндра. Разобьем коаксиальный цилиндр на тонкие диски высотой dz. На таком диске выделим узкий кольцевой слой радиусом R и шириной dR. В свою очередь на этом кольцевом слое выделим двумя радиусами, угол между которыми составляет малую величину d, кольцевой сектор. Поскольку размеры этого сектора очень малы, мы не допустим большой ошибки, если его объем dV будем рассчитывать как объем куба со сторонами Rd, dR и dZ. Таким образом, элементарно малый объем можно представить в следующем виде: dV=RdRddZ

Интегрирование по всему объему цилиндра эквивалентно тройному интегрированию: по  в пределах от 0 до 2, по Z - в пределах от -h/2 до h/2, и по R в пределах от R1 до R2. Таким образом, интеграл (1) можно записать в следующем виде:

.

Интегрирование по  дает просто множитель 2, то есть

Если предположить, что тело однородно (=Const), то после интегрирования по z и R, получаем

Но величина (R22-R12) - это площадь основания цилиндра, (R22-R12)h - это объем цилиндра, а (R22-R12)h - это масса цилиндра M. Таким образом, для расчета момента инерции однородного коаксиального цилиндра получаем простую формулу:

.  (2)

Итак, зная массу коаксиального цилиндра, а также его внутренний и внешний диаметр, можно определить его момент инерции относительно оси симметрии.

Необходимо отметить следующее обстоятельство. Формула (2) применима для определения величины момента инерции цилиндра только в том случае, если заранее известно, что цилиндр однороден. Такое предположение (об однородности) отсутствует в методе крутильных колебаний.

2. Расчет интеграла в формуле (1) достаточно прост для тел, обладающих некоторой симметрией. Для тел произвольной формы подобное интегрирование в общем случае невозможно. В этой ситуации для определения момента инерции можно воспользоваться наблюдением какого-либо движения, одна из характеристик которого известным образом зависит от момента инерции. В данной работе такой характеристикой является период крутильных колебаний. Метод крутильных колебаний позволяет определять значения моментов инерции для тел произвольной формы, имеющих произвольное распределение плотности по объему.

Крутильными колебаниями называют колебания, которые совершает тело, прикрепленное к стержню (или нити), если стержень (или нить) подвергнуть деформации кручения. Известно, что когда колебания совершает тело, подвешенное к пружине, подверженной деформации сжатия (растяжения), то тело в этом случае движется поступательно. Если деформации малы, т.е. справедлив закон Гука, то период таких колебаний Т определяется по формуле , где m - масса тела и k - жесткость пружины при деформации сжатия (растяжения).

При крутильных колебаниях тело как бы совершает незавершенные вращения относительно некоторой оси. Поэтому в формулу для периода колебаний вместо массы входит момент инерции относительно оси вращения, а вместо жесткости k -жесткость по отношению к деформации кручения . Таким образом, формула для периода крутильных колебаний приобретает вид

    (3)

Связь между периодом колебаний и моментом инерции, задаваемая формулой (3), позволяет в принципе определить величину J из измерений периода Т, если известно значение . Однако значение  обычно известно с невысокой точностью, поэтому способ измерения J, основанный на соотношении (3) имеет большую систематическую погрешность.

Систематическую погрешность измерений, обусловленную погрешностью , можно исключить, если метод крутильных колебаний использовать для определения отношения моментов инерции тел прикрепленных к одной и той же нити. Очевидно, что это отношение не зависит от величины . На самом деле, пусть к нити прикреплено некоторое тело, имеющее момент инерции относительно оси, совпадающей с осью вращения, равной J0. Период колебаний Т0 такого тела равен

 (4)

Если к первому телу прикрепить другое тело, момент инерции которого относительно оси вращения равен J , то момент инерции такой системы будет равен сумме J+J0 . Соответственно изменится и период колебаний такой системы.

 (5)

Разделив (5) на (4), найдем . Отсюда

(6)

Из формулы (6) видно, что систематическая погрешность определения отношения J/J0 зависит только от систематических погрешностей измерения периодов колебаний Т и Т0, которые у современных секундомеров малы. Очевидно, что если величина J0 относительно оси вращения известна из каких-либо других соображений, то, вычислив соотношение J/J0 по формуле (6), легко определить момент инерции J относительно той же оси вращения.

МЕТОДИКА ЭКСПЕРИМЕНТА

Установка для измерения момента инерции методом крутильных колебаний представляет собой, собранные на массивном основании колонку для крепления исследуемых образцов и миллисекундомера. На колонке при помощи прижимных винтов размещаются три кронштейна. Верхний и нижний кронштейны имеют зажимы, Служащие для закрепления стальной проволоки, к которой подвешивается рамка с платформой в виде тонкого диска. Момент инерции рамки с платформой J0 относительно оси вращения известен. Его значение приведено на установке. Конструкция рамки такова, что позволяет размещать на платформе различные тела, момент инерции которых необходимо измерить. На среднем кронштейне закреплена стальная плита, которая служит основанием фотоэлектрическому датчику, электромагниту и угловой шкале. Электромагнит может изменять положение на плите, а его положение относительно фотодатчика показывает на угловой шкале стрелка, прикрепленная к электромагниту.

На лицевой панели миллисекундомера находятся:

- клавиша "Сеть" - включатель сети. Нажатие этой клавиши вызывает включение питающего напряжения. При этом на двух цифровых табло должны высвечиваться нули, а также должна гореть лампочка фотодатчика;

- клавиша "Сброс" - сброс секундомера. Нажатие этой клавиши вызывает сброс схем блока измерений и генерирование сигнала, разрешающего измерение;

- клавиша "Стоп" - окончание измерений. При нажатии этой клавиши генерируется сигнал на окончание счета времени;

- клавиша "Пуск" - управление электромагнитом. Нажатие этой клавиши вызывает отключение тока, питающего электромагнит.

На лицевой панели находится также два цифровых табло. На одном высвечивается число периодов колебаний рамки, на другом - время, в течение которого эти колебания совершаются.

При нажатии клавиши "Сеть" секундомер устанавливается в начальное состояние (нули на цифровых индикаторах) и блокируется схема формирования импульсов. Эта блокировка снимается сигналом, который вырабатывается при нажатии клавиши "Сброс". Нажатие клавиши "Пуск" освобождает электромагнит, и начинаются крутильные колебания маятника. В момент первого прерывания светового потока, падающего на фототранзистор от лампочки, генерируется электрический импульс, который подключает к счетчику времени кварцевый генератор. Счетчик подсчитывает число импульсов, следующих с кварцевого генератора с частотой 10 Кгц. Одновременно другой счетчик подсчитывает каждый (следующий после первого) нечетный импульс. Прохождение каждого такого нечетного импульса соответствует одному колебанию и показание цифрового табло счетчика периодов изменится на единицу.

При нажатии клавиши "Стоп" формируется сигнал, который подготавливает схемы к концу счета. Полностью счет прекращается в момент генерации очередного нечетного импульса фотодатчиком. При этом на цифровых табло высвечивается число колебаний и время, в течение которого они совершились. Систематическая погрешность измерения времени составляет 0,02%.

Таким образом, методика измерения осевого момента инерции тела сводится к следующему. Вначале следует убедиться в применимости формулы (6), т.е. убедиться в том, что колебания слабо затухающие. После этого определить период колебания пустой платформы и платформы, с установленным на нее телом. Затем рассчитать J образца по формуле (6).

Описанный метод пригоден для определения момента инерции тела произвольной формы относительно оси колебаний. В частном случае, когда тело установлено на платформе так, что ось колебаний совпадает с осью симметрии тела, то методом крутильных колебаний определяется момент инерции относительно оси симметрии.

ВЫПОЛНЕНИЕ РАБОТЫ И УСЛОВИЯ ЭКСПЕРИМЕНТА

1. Включить прибор нажатием клавиши Сеть”, убедиться в том, что индикаторы измерителя высвечивают нули, и светится лампочка фотодатчика. Установить электромагнит в некоторое положение и при помощи его зафиксировать рамку с платформой.

2. Убедиться в том, что колебания крутильного маятника являются слабо затухающими. Для этого, нажав последовательно клавиши Сброс” и Пуск”, определите число колебаний N, за которое амплитуда уменьшается в 2-3 раза. Если N>10, то затухание мало и можно пользоваться формулой (4). Измерение N провести для пустой платформы и для платформы с установленным на нее кольцом.

3. Определить время t0, в течение которого рамка с пустой платформой совершит N колебаний. Измерения следует провести при различных N (всего 5-7 раз). Очевидно, что Т0=t0/N. Данные занести в таблицу. Рассчитать среднее значение, случайную и систематическую погрешности.

4. Поместить на платформу исследуемый образец. Следить за тем, чтобы центр кольца совпадал с центром платформы. Измерить период колебаний Т, так же как и в пункте 3.

5. Рассчитать момент инерции кольца по формуле (6).

6. Определить массу кольца М. Для этого взвесить кольцо на технических весах дважды, располагая его на различных чашках. Найти среднее этих измерений, рассчитать случайную погрешность, систематическую погрешность взвешивания считать равной массе наименьшего используемого разновеса.

7. Измерить внутренний и внешний радиусы кольца с помощью штангенциркуля. Измерение проводить не менее 5 раз. Рассчитать среднее значение R1 и R2, их случайные и систематические погрешности.

8. Рассчитать момент инерции кольца по формуле (2).

ОБРАБОТКА РЕЗУЛЬТАТОВ ЭКСПЕРИМЕНТА

Величины моментов инерции кольца, измеренные как методом крутильных колебаний, так и методом, использующим формулу (2), является результатами косвенных измерений. Получим формулы для расчета погрешности измерений величин J, полученных этими методами. Для метода крутильных колебаний, в соответствии с правилами расчета погрешности косвенных измерений и формулой (6), получаем

Разделив обе части полученного выражения на J, получаем

. (7)

Подставляя в (7) вместо J0, T0 и T вначале случайные, а затем систематические погрешности измеряемых впрямую величин, рассчитываются погрешности J, обусловленные соответственно случайными (oJ) и систематическими (c J) погрешностями прямых измерений. Полная погрешность равна .

Аналогично выводится формула и для расчета погрешности измерения методом, использующим формулу (5)

или . (8)

Так же, как и раньше, по формуле (8) рассчитываются погрешности, обусловленные случайными и систематическими погрешностями прямых измерений, а затем и полная погрешность.

После вычисления погрешностей можно провести корректное сравнение результатов измерения величин момента инерции, полученных разными способами. В том случае, если результаты измерений различаются на величину большую, чем погрешности эксперимента, необходимо сделать вывод о возможных причинах такого расхождения.


 

А также другие работы, которые могут Вас заинтересовать

40134. Системы линейных алгебраических уравнений. Условие существования решения, решение систем по формулам Крамера и методом исключений, фундаментальная система решений 130 KB
  Условие существования решения решение систем по формулам Крамера и методом исключений фундаментальная система решений. СЛАУ называется система nго порядка: 1 СЛАУ можно представить в виде матрицы АХ = В где – известные коэффициенты системы 1 – известные правые части системы 1 – неизвестные искомые величины Набор nмерный набор называется решением СЛАУ если при подстановке их вместо соответствующих неизвестных каждое из уравнений системы превращается в истинное равенство набор удовлетворяет 1. Если система...
40135. Линейные пространства. Аксиоматика, примеры (линейные пространства строк из n чисел, т*n-матриц, непрерывных на отрезке функций). Размерность, базис и система координат в Rn разложение по базису. Евклидово пространство 147.5 KB
  Евклидово пространство. Векторное линейное пространство Непустое множество элементов называется векторным пространством над полем лямбда если выполняется следующие аксиомы: I. – пространство строк из n чисел xyx1y1xnyn x=x1 xn =00 =x x=1x=x1xn = вещественное пространство является векторным. – нулевая матрица 0=А1А = – векторное пространство.
40136. Пределы и непрерывность. Числовая последовательность и ее предел. Определение функции, ее непрерывность на языке эпсилон-дельта и языке пределов, равномерная непрерывность 165 KB
  Обратное не верно: xn=nsin n неограниченная не бесконечно большая Функция Функцией y = fx называется закон по которому каждому значению xDfR ставится в соответствие единственное действительное число yR. Функция может быть задана аналитически то есть формулой таблично или графически. y=x2 Если функция задана таблично то чтобы найти значение функции для промежуточных значений аргумента применяют интерполяцию заменяя функцию линейной квадратичной на участке между двумя значениями аргумента. Например fx0=0 = 3  O1...
40137. Производная функции одной переменной. Определение, ее геометрический смысл, простейшие правила вычисления производной (производная от функции, умноженной на константу, от суммы функций, от произведения функций, частного и степени). Производная сложной фун 140 KB
  Производная функции одной переменной. Определение ее геометрический смысл простейшие правила вычисления производной производная от функции умноженной на константу от суммы функций от произведения функций частного и степени. Производная сложной функции. Если предел  и конечен то его значение называют производной функции f в т.
40138. Дифференцирование функций многих переменных: производная по направлению, частные производные, дифференциал, Производная от сложных функций, градиент, направления убывания, геометрический смысл градиента 141 KB
  Если то функция называется дифференцируемой по x в точке x0 y0. 1 2  для  0  0:  x yDz  Ox0 y0 {x0 y0}: zx y  O Значение lim не должно зависеть от способа стремления точки x y к точке x0 y0: на плоскости для функции нескольких переменных При разных  получаем разные значения lim  lim не . Непрерывность Функция zx y называется непрерывной в точке x0 y0 если: 1. Если функция z = zx y дифференцируема в точке по совокупности аргументов то она непрерывна в этой точке.
40139. Определенный интеграл и его геометрический смысл (задача о площади криволинейной трапеции). Приближенное вычисление определенных интегралов, формулы трапеций и Симпсона 165.5 KB
  Пусть функция у = fx определена на отрезке [а b]. Обозначим через На каждом из сегментов выберем произвольные точки и составим интегральную сумму: Обозначим – диаметр разбиения если  конечный не зависящий от способа разбиения отрезка [а b] и выбора точек то его значение называется определенным интегралом от функции fx его обозначение а функция fx называется интегрируемой по Риману на [а b]. Если функция fx интегрируема на [а b] то она ограничена на этом сегменте. ДОКВО Если функция fx не ограничена на [а b] то...
40140. Приведение задач линейного программирования к каноническому виду. Методы искусственного базиса 66 KB
  Основная теорема ЛП: если задача ЛП имеет решение то целевая функция достигает экстремального значения хотя бы в одной из угловых точек многоугольника решений. Таким образом с теоретической точки зрения решение задачи ЛП выглядит следующим образом: можно найти все угловые точки многоугольника решения высчитать в них значение ЦФ выбрать наибольшее наименьшее. процесс нахождения угловых точек сравним по трудности с решением исходной задачи. В этом заключается основная идея СМ которая предполагает: 1 уметь находить первоначальное базисное...
40141. ОПТИМАЛЬНЫЕ ЛИНЕЙНЫЕ ФИЛЬТРЫ СИГНАЛОВ НА ФОНЕ ПОМЕХ 1.62 MB
  Смысл слова выделение сигнала совпадает с понятием оценки сигнала. Пусть имеется сумма сигнала и шума: 6.1 Требуется чтобы оценка сигнала являющаяся откликом на воздействие t рис.
40142. ОПТИМАЛЬНОЕ ОБНАРУЖЕНИЕ ДЕТЕРМИНИРОВАННЫХ СИГНАЛОВ 231.5 KB
  3 Тема №3 Основы теории обнаружения и различения сигналов ОПТИМАЛЬНОЕ ОБНАРУЖЕНИЕ ДЕТЕРМИНИРОВАННЫХ СИГНАЛОВ Обнаружение сигналов как статистическая задача Пусть на вход обнаружителя поступает сумма сигнала st и шума nt представляющая собой случайный непрерывный процесс 7. Дискретизация проводится в соответствии с теоремой Котельникова: для дискретизации аналогового сигнала без потерь информации частота отсчетов должна быть в...