25611

Мембраны клеток

Доклад

Биология и генетика

состав: липиды 40 и белки 60 ; кроме того во многих мембранах обнаружены углеводы 5 10 . Многие мембранные белки состоят из двух частей участков с полярными аминокислотами и участков с неполярными: глицином аланином валином лейцином. Такие белки в липидных слоях мембран располагаются так что их неполярные участки как бы погружены в жирную часть мембраны где находятся гидрофобные участки липидов. Эти белки как бы пронизывают мембрану их называют интегральными белками мембран.

Русский

2013-08-17

32 KB

0 чел.

Мембраны клеток

К клеточным мембранам относятся плазмолемма, кариолемма, мембраны митохондрий, ЭПС, аппарата Гольджи, лизосом, пероксисом. Это тонкие (6—10 нм) пласты липопротеидной природы (липиды в комплексе с белками). Хим.состав: липиды (40 %) и белки (60 %); кроме того, во многих мембранах обнаружены углеводы (5—10 %).

Липиды плохо растворимы в воде (гидрофобность) и хорошо растворимы в органических растворителях и жирах (липофильность). Представителями липидов в клеточных мембранах являются фосфолипиды (глицерофосфатиды), сфингомиелины и из стероидных липидов — холестерин. Особенностью липидов является разделение их молекул на две функционально различные части: гидрофобные неполярные, не несущие зарядов («хвосты»), состоящие из жирных кислот, и гидрофильные, заряженные полярные «головки». Это определяет способность липидов самопроизвольно образовывать двухслойные (билипидные) мембранные структуры толщиной 5-7нм.

Многие мембранные белки состоят из двух частей — участков с полярными аминокислотами и участков с неполярными: глицином, аланином, валином, лейцином. Такие белки в липидных слоях мембран располагаются так, что их неполярные участки как бы погружены в «жирную» часть мембраны, где находятся гидрофобные участки липидов. Полярная (гидрофильная) же часть этих белков взаимодействует с головками липидов и обращена в сторону водной фазы. Эти белки как бы пронизывают мембрану, их называют интегральными белками мембран. Кроме интегральных белков, существуют белки, частично встроенные в мембрану, — полуинтегральные и примембранные, не встроенные в билипидный слой. По биологической роли белки мембран можно разделить на белки-ферменты, белки-переносчики, рецепторные и структурные белки.

Углеводы мембран входят в их состав не в свободном состоянии, они связаны с молекулами липидов или белков. Такие вещества называются соответственно гликолипидами и гликопротеидами.

Все мембраны обладают рядом общих свойств, определяемых их основной структурой. Они являются барьерами, резко ограничивающими свободную диффузию веществ между цитоплазмой и средой, с одной стороны, и между матриксом и содержимым мембранных органелл, с другой. Особенность же специфических функциональных нагрузок каждой мембраны определяется свойствами и особенностями белковых компонентов, большая часть из которых представляет собой ферменты или ферментные системы. Большую роль в функционировании мембран играют гликолипиды и гликопротеиды надмембранного слоя.

Плазмолемма - внешняя клеточная мембрана. Это поверхностная периферическая структура, не только ограничивающая клетку снаружи, но и обеспечивающая ее непосредственную связь с внеклеточной средой, а следовательно, и со всеми веществами и стимулами, воздействующими на клетку. Она имеет толщину 10 нм.

Химический состав. Основу плазмолеммы составляет липопротеиновый комплекс. Снаружи от плазмолеммы располагается надмембранный слой — гликокаликс (3-4 нм) — гликопротеиновый комплекс,в состав которого входят различные углеводы. Углеводы образуют цепочки полисахаридов, связанные с белками и липидами плазмолеммы. В гликокаликсе могут быть белки, не связанные непосредственно с билипидным слоем. Как правило, это белки-ферменты, участвующие во внеклеточном расщеплении различных веществ, таких как углеводы, белки, жиры и др.

Функции плазмолеммы: функция разграничения цитоплазмы с внешней средой, функции рецепции и транспорта различных веществ как внутрь клетки, так и из нее.

Рецепторные функции. С плазмолеммой связана локализация специфических рецепторов, отвечающих за такие важные процессы, как взаимное распознавание клеток, развитие иммунитета, рецепторов, реагирующих на физические и химические факторы. Рецепторами на поверхности клетки могут служить гликопротеиды и гликолипиды мембран. Существуют рецепторы к биологически активным веществам — гормонам, медиаторам, к специфическим антигенам разных клеток или к определенным белкам и др.

Выполняя транспортную функцию, плазмолемма обеспечивает пассивный перенос ряда веществ, например воды, ряда ионов и некоторых низкомолекулярных соединений. Другие вещества проникают через мембрану путем активного переноса против градиента концентрации с затратой энергии за счет расщепления АТФ. Так транспортируются многие органические молекулы (сахара, аминокислоты и др.). Эти процессы могут быть сопряжены с транспортом ионов, в них участвуют белки-переносчики.

Эндоцитоз формально разделяют на фагоцитоз (захват и поглощение клеткой крупных частиц, например бактерий или фрагментов других клеток) и пиноцитоз (захват отдельных молекул и макромолекулярных соединений). Плазмолемма принимает участие в выведении веществ из клетки (экзоцитоз). В этом случае внутриклеточные продукты (белки, мукополисахариды, липопротеиды и др.), заключенные в вакуоли или пузырьки и отграниченные от гиалоплазмы мембраной, подходят к плазмолемме. В местах контактов плазмолемма и мембрана вакуоли сливаются, и содержимое вакуоли поступает в окружающую среду. Процесс эндоцитоза и экзоцитоза осуществляется при участии микротрубочек и сократимых микрофиламентов.

Плазмолемма многих клеток животных может образовывать выросты различной структуры. У ряда клеток такие выросты включают в свой состав специальные компоненты цитоплазмы (микротрубочки, фибриллы), что приводит к развитию немембранных органелл — ресничек, жгутиков и др.


 

А также другие работы, которые могут Вас заинтересовать

20754. Устройство поперечно-строгального станка и его настройка 126.1 KB
  Техническая характеристика Наибольший ход ползуна мм 520 Размеры рабочей поверхности стола длинахширина мм 500x360 Частота ходов ползуна ход мин 132150 Горизонтальная подача стола мм дв. Периодически при каждом обратном ходе ползуна стол может перемещаться в поперечном горизонтальном направлении по направляющим поперечины 2 или вместе с поперечиной вертикально по станине. Передвижение гайки от оси вала 1У увеличивает радиус кривошипа а следовательно угол качания кулисы и ход ползуна. Место хода исходное положение ползуна...
20755. Плоскошлифовальный станок и его настройка 169.73 KB
  Распределитель 14 управляется распределителем 21 положение которого зависит от крана реверса 27. В результате распределитель 14 занимает левое положение А. В результате распределитель 14 занимает левое положение А. От расположения упоров зависит длина хода и исходное положение стола.
20756. Определение технологических свойств порошков 1.26 MB
  Универсальная испытательная машина прессформа весы лабораторные волюмометр прибор для определения текучести порошка штангенциркуль секундомер порошки железа меди и нитрида алюминия. Форма частиц порошка: а губчатая б сферическая в осколочная всех частиц порошка взятых в единице объема или массы пик нометрическая плотность фактическая или истинная плотность частиц порошка и микротвердость. Насыпной плотностью ГОСТ 19440 74 порошка унас называется масса единицы объема порошка при свободной насыпке. Насыпная плотность...
20757. Изучение диаграммы состояния сплавов системы железо-углерод 106.72 KB
  Содержание углерода в цементите составляет 667. Графит одна из двух алмаз графит кристаллических модификаций углерода. Ординаты между ними двойным сплавам общее содержание железа и углерода в которых равно 100. В системе FeFe3C возможны жидкая Ж фаза представляющая собой жидкий раствор железа и углерода и четыре твердые: δ феррит γ аустенит α феррит и Fe3C.
20758. Разработка отдельных рекомендаций по технологии изготовления поковки методами горячей объемной штамповки 511.55 KB
  Обработка металлов давлением Практическая работа № 3 Разработка отдельных рекомендаций по технологии изготовления поковки методами горячей объемной штамповки Цель работы: ознакомиться с технологическим процессом горячей объемной штамповки при изготовлении поковки на кривошипном горячештампо вочном прессе и с методикой расчетов заготовки и штампа. Эскиз поковки нанесенный на эскиз детали с указанием плоскости разъема; расчеты припусков допусков штамповочных уклонов и радиусов закругления. Расчеты и эскиз горячей поковки с облоем и...
20759. Определение режима резания лезвийным инструментом 720.87 KB
  Обработка металлов резанием Практическая работа №4 Определение режима резания лезвийным инструментом Цель работы: ознакомиться с методикой определения режима резания для лезвийной обработки точение строгание сверление зенкерование развертывание фрезерование и т. Порядок проведения Необходимым условием для назначения режимов резания является наличие разработанного технологического процесса по операциям и переходам а также паспортных данных станков. Рекомендуется соблюдать определенную последовательность назначения режимов резания....
20760. Определение твердости металлов По Бринеллю и Роквеллу 237.6 KB
  Лабораторная работа № 1 Тема: Определение твердости металлов По Бринеллю и Роквеллу Выполнил: Учащийся гр. Цель работы: ознакомиться с методами и способами испытаний твердости металлов. Методы измерения твердости: статического и ударного вдавливания царапин отскока и другие. Таблица 1 Сравнительные значения твердости...
20761. Определение механических свойств металлов при испытании на растяжение 184.58 KB
  Диаграмма растяжения низкоуглеродистой стали и схемы определения характеристик прочности Для нагрузки Рпц удлинение образца пропорционально усилию растяжения и при его снятии образец восстанавливает свои первоначальные форму и размеры; Рт усилие предела текучести физического соответствует нагрузке когда деформация образца происходит без ее увеличения;т предел текучести физический. Эти показатели определяют когда пластическая деформация образца достигает 02 от его рабочей длины l0. Усилие Pk меньше P max что...
20762. Микроскопический анализ металлов и сплавов 138.25 KB
  Если в задачу изучения микроструктуры входит определение размера зерна то рекомендуется использовать метод визуального сравнения зерен изучаемой микроструктуры при увеличении х100 со стандартной шкалой размеров зерна по ГОСТ 653982 рис. Устанавливается номер балл зерна затем по номеру используя табл.10 определяется поперечный размер зерна мм его площадь мм2 и количество зерен на площади шлифа в 1 мм2.10 Характеристика оценки зерна в зависимости от его номера Продолжение таблицы 1.