25647

Нервные волокна

Доклад

Биология и генетика

По строению оболочек различают миелиновые и безмиелиновые нервные волокна. Безмиелиновые нервные волокна находятся преимущественно в составе вегетативной нервной системы. В нервных волокнах внутренних органов как правило в таком тяже имеется не один а несколько 1020 осевых цилиндров принадлежащих различным нейронам.

Русский

2013-08-17

32.5 KB

1 чел.

Нервные волокна

Отростки нервных клеток, покрытые оболочками, называются нервными волокнами. По строению оболочек различают миелиновые и безмиелиновые нервные волокна. Отросток нервной клетки в нервном волокне называют осевым цилиндром, или аксоном, так как чаще всего (за исключением чувствительных нервов) в составе нервных волокон находятся именно аксоны.

В ЦНС оболочки отростков нейронов образуют отростки олигодендроглиоцитов, а в периферической - нейролеммоциты.

Безмиелиновые нервные волокна находятся преимущественно в составе вегетативной нервной системы. Нейролеммоциты оболочек безмиелиновых нервных волокон, располагаясь плотно, образуют тяжи, в которых на определенном расстоянии друг от друга видны овальные ядра. В нервных волокнах внутренних органов, как правило, в таком тяже имеется не один, а несколько (10-20) осевых цилиндров, принадлежащих различным нейронам. Они могут, покидая одно волокно, переходить в смежное. Такие волокна, содержащие несколько осевых цилиндров, называются волокнами кабельного типа. При электронной микроскопии безмиелиновых нервных волокон видно, что по мере погружения осевых цилиндров в тяж нейролеммоцитов оболочки последних прогиба-ются, плотно охватывают осевые цилиндры и, смыкаясь над ними, образуют глубокие складки, на дне которых и располагаются отдельные осевые цилиндры. Сближенные в области складки участки оболочки нейролеммоцита образуют сдвоенную мембрану - мезаксон, на которой как бы подвешен осевой цилиндр. Оболочки нейролеммоцитов очень тонкие, поэтому ни мезаксона, ни границ этих клеток под световым микроскопом нельзя рассмотреть, и оболочка безмиелиновых волокон в этих условиях выявляется как однородный тяж цитоплазмы, «одевающий» осевые цилиндры.

Миелиновые нервные волокна встречаются как в центральной, так и в периферической нервной системе. Они значительно толще безмиелиновых нервных волокон. Диаметр поперечного сечения их колеблется от 2 до 20мкм. Они также состоят из осевого цилиндра, «одетого» оболочкой из нейролеммоцитов (шванновских клеток), но диаметр осевых цилиндров этого типа волокон значительно толще, а оболочка сложнее. В сформированном миелиновом волокне принято различать два слоя оболочки: внутренний, более толстый, - миелиновый слой и наружный, тонкий, состоящий из цитоплазмы, ядер нейролеммоцитов и нейролеммы.

Миелиновый слой содержит значительное количество липидов, поэтому при обработке осмиевой кислотой он окрашивается в темно-коричневый цвет. В миелиновом слое периодически встречаются узкие светлые линии - насечки миелина, или насечки Шмидта - Лантермана. Через определенные интервалы (1-2мм) видны участки волокна, лишенные миелинового слоя, — узловатые перехваты, или перехваты Ранвье.

В процессе развития аксон погружается в желобок на поверхности нейролеммоцита. Края желобка смыкаются. При этом образуется двойная складка плазмолеммы нейролеммоцита - мезаксон. Мезаксон удлиняется, концентрически наслаивается на осевой цилиндр и образует вокруг него плотную слоистую зону - миелиновый слой. На электронных микрофотографиях видны главные плотные и интрапериодальные линии. Первые образуются от слияния цитоплазматических поверхностей плазмолеммы нейролеммоцита (или олигодендроглиоцита в ЦНС), вторые - от контакта экстрацеллюлярных поверхностей соседних слоев плазмолеммы нейролеммоцита. Отсутствие миелинового слоя в области узловых перехватов объясняется тем, что в этом участке волокна кончается один нейролеммоцит и начинается другой. Осевой цилиндр в этом месте частично прикрыт интердигитирующими отростками нейролеммоцитов. Аксолемма (оболочка аксона) обладает в области перехвата значительной электронной плотностью. Наличие большого числа митохондрий в этой области свидетельствует о высокой метаболической активности аксолеммы. Следует отметить, что ветвление аксонов происходит также в области перехватов.

Отрезок волокна между смежными перехватами называется межузловым сегментом. Длина межузлового сегмента, так же как и толщина миелинового слоя, зависит от толщины осевого цилиндра. Насечка миелина представляет собой участок миелинового слоя, где завитки мезаксона лежат неплотно друг к другу, образуя спиральный туннель, идущий снаружи внутрь и заполненный цитоплазмой нейролеммоцита, т.е. место расслоения миелина. Снаружи от нейролеммоцита располагается базальная мембрана.

Миелиновые волокна центральной нервной системы отличаются тем, что в них миелиновый слой формирует один из отростков олигодендроглиоцита. Остальные его отростки участвуют в образовании миелинового слоя других миелиновых волокон (каждый в пределах одного межузлового сегмента). Миелиновые волокна ЦНС не имеют насечек миелина, а нервные волокна не окружены базальными мембранами. Миелин в ЦНС содержит миелиновый щелочной белок и протеолипидный белок. Несколько демиелинизирующих болезней ЦНС человека связаны с недостатком или отсутствием одного или обоих белков.

Скорость передачи импульса миелиновыми волокнами больше, чем безмиелиновыми. Тонкие волокна, бедные миелином, и безмиелиновые волокна проводят нервный импульс со скоростью 1-2м/с, тогда как толстые миелиновые - со скоростью 5-120м/с.

В безмиелиновом волокне волна деполяризации мембраны идет по всей аксолемме, не прерываясь, а в миелиновом возникает только в области перехвата. Таким образом, для миелиновых волокон характерно сальтаторное проведение возбуждения, т.е. прыжками. Между перехватами идет электрический ток, скорость которого выше, чем прохождение волны деполяризации по аксолемме.


 

А также другие работы, которые могут Вас заинтересовать

1079. Тепловой цикл паротурбинной установки и показатели экономичности ТЭС. Особенности турбоустановок АЭС 394.5 KB
  Тепловой цикл паротурбинной установки ТЭС и показатель его термодинамической эффективности. Энергетические показатели тепловой электростанции и общий баланс теплоты и мощности для ее энергоблоков. Абсолютные и относительные показатели экономичности турбин и турбоустановок. Расходы пара, теплоты и топлива для паротурбинной установки.
1080. Роль промежуточного перегрева водяного пара в турбоустановках ТЭС. Регенеративный подогрев питательной воды. Комбинированная выработка теплоты и электроэнергии на ТЭЦ 336.5 KB
  Промежуточный перегрев водяного пара в паротурбинных установках. Тепловая схема ПТУ с промежуточным перегревом водяного пара. Регенеративный подогрев питательной воды в турбоустановках. Комбинированная выработка теплоты и электрической энергии на ТЭЦ.
1081. Процесс расширения пара в турбинной ступени 370 KB
  Основные уравнения и формулы, используемые для расчета движения водяного пара в проточной части турбинных ступеней. Конструкция турбинной ступени осевого типа и процессы преобразования энергии в ней. Тепловая диаграмма процесса расширения в турбинной ступени. Степень реактивности турбинной ступени.
1082. Мощность и экономичность турбинных ступеней 443.5 KB
  Усилия в турбинной ступени и ее мощность. Относительный лопаточный КПД ступени. Двухвенечные ступени паровых турбин. Процесс расширения в проточной части двухвенечной ступени.
1083. Турбинные решетки и их выбор 3.25 MB
  Геометрические характеристики турбинных решеток. Газодинамические и режимные характеристики турбинных решеток. Маркировка турбинных решеток и их формирование. Зависимости для определения коэффициентов потерь сопловой решетки.
1084. Относительный внутренний КПД турбинной ступени 765.5 KB
  Потери трения диска и лопаточного бандажа. Потери при парциальном подводе водяного пара в турбинную ступень. Потери от утечек в турбинной ступени. Лабиринтовые уплотнения. Потери от влажности водяного пара.
1085. Расчет турбинных ступеней. Методика расчета турбинной ступени 426.5 KB
  Выбор исходных данных и параметров при расчете турбинной ступени. Методика расчета турбинной ступени. Процесс расширения водяного пара в турбинной ступени. Схема отклонения потока в косом срезе сопловой решетки. Особенности расчета турбинных ступеней.
1086. Особенности расчета и проектирования ступеней с длинными лопатками 499 KB
  Уравнения радиального равновесия. Законы профилирования турбинных лопаток. Закон постоянного профиля сопловых и рабочих лопаток по высоте ступени. Примеры исполнения лопаток паровых турбин.
1087. Основы проектирования паровых турбин 613 KB
  Основные показатели паровых турбин и их компоновки. Схема компоновки паровой турбины К-800-23,5 ЛМЗ. Предельная мощность однопоточной конденсационной турбины. Компоновочные решения для паровых турбин ТЭС. Упрощенная тепловая схема конденсационной ПТУ. Способы повышения мощности паровых турбин.