25693

Сердце

Доклад

Биология и генетика

Стенка сердца состоит из трех оболочек: внутренней эндокарда средней миокарда и наружной эпикарда. Первая закладка сердца появляется в начале 3й недели развития у эмбриона длиной 15 мм в виде парного скопления мезенхимных клеток которые расположены в задней части головного отдела зародышевого щитка по сторонам от средней линии под висцеральным листком мезодермы. К 4му месяцу заканчивается образование всех отделов проводящей системы сердца. Клапаны сердца: предсердножелудочковые и желудочковососудистые развиваются в основном...

Русский

2013-08-17

42.5 KB

4 чел.

Сердце

Это основной орган, приводящий в движение кровь. Стенка сердца состоит из трех оболочек: внутренней — эндокарда, средней — миокарда и наружной — эпикарда.

Развитие. Первая закладка сердца появляется в начале 3-й недели развития у эмбриона длиной 1,5 мм в виде парного скопления мезенхимных клеток, которые расположены в задней части головного отдела зародышевого щитка по сторонам от средней линии под висцеральным листком мезодермы. Позднее эти скопления превращаются в две удлиненные трубочки, впадающие вместе с прилегающими висцеральными листками мезодермы в целомическую полость тела. В дальнейшем мезенхимные трубки сливаются и из их стенок образуется эндокард. Та область висцеральных листков мезодермы, которая прилежит к этим трубкам, получила название миоэпикардиальных пластинок. Из этих пластинок дифференцируются 2 части: одна - внутренняя, прилежащая к мезенхимной трубке, превращается в зачаток миокарда, а из наружной образуется эпикард.

Клетки зачатка миокарда - кардиомиобласты - делятся, их объем увеличивается, и на 2-м месяце развития зародыша в них появляются идущие в разных направлениях миофибриллы с поперечной исчерченностью. Z-полоски появляются одновременно с саркотубулярной сетью и поперечными инвагинациями клеточной мембраны (Т-системы). На плазмолеммах контактирующих миобластов местами отмечаются десмосомоподобные структуры. Формирующиеся в миобластах миофибриллы также прикрепляются к плазмолеммам, где позднее образуются вставочные диски.

В конце 2-го месяца появляются признаки формирования проводящей системы, миобласты которой отличаются большим количеством ядер, замедленной дифференцировкой фибриллярного аппарата. К 4-му месяцу заканчивается образование всех отделов проводящей системы сердца. Развитие мышечной ткани левого желудочка происходит быстрее, чем правого.

Клапаны сердца: предсердно-желудочковые и желудочково-сосудистые - развиваются в основном как дупликатура эндокарда. Левый предсердно-желудочковый клапан появляется в виде эндокардиального валика, в который позднее (у эмбриона 2,5мес) начинает врастать соединительная ткань из эпикарда. На 4-м месяце внутриутробного периода из эпикарда в створку клапана врастает пучок коллагеновых волокон, образующий в будущем фиброзную пластинку. Правый предсердно-желудочковый клапан закладывается как мышечно-эндокардиальный валик. С 3-го месяца развития зародыша мышечная ткань правого атриовентрикулярного клапана уступает место соединительной ткани, врастающей со стороны миокарда и эпикарда. У взрослого человека мышечная ткань сохраняется в виде рудимента только с предсердной стороны в основании клапана. Таким образом, предсердно-желудочковые клапаны являются производными не только эндокарда, но и соединительной ткани миокарда и эпикарда. Аортальные клапаны имеют двойное происхождение: синусная сторона их образуется из соединительной ткани фиброзного кольца, которая покрывается эндотелием, а желудочковая - из эндокарда.

Первые нервные терминали выявляются в предсердиях 5,5-недельных эмбрионов человека, а на 8-й неделе в предсердиях обнаруживаются ганглии, состоящие из 4-10 нейробластов. Из клеток ганглиозной пластинки, мигрировавших в зачаток предсердий, образуются холинергические нейроны, глиоциты и мелкие гранулярные клетки. Холинергический и адренергические нервные аппараты сердца развиваются почти одновременно. Врастание нервных волокон в развивающемся сердце идет поэтапно. Сначала появляются нервные волокна в правом, затем в левом предсердии, позже - в правом, затем в левом желудочке. Причем вначале в предсердиях выявляются веточки от симпатических стволов, а позднее - ветви грудных симпатических волокон.

Строение. В стенке сердца различают три оболочки: внутреннюю - эндокард, среднюю, или мышечную, - миокард и наружную, или серозную, - эпикард.

Эндокард выстилает изнутри камеры сердца, папиллярные мышцы, сухожильные нити, а также клапаны сердца. Толщина эндокарда в различных участках неодинакова. Он толще в левых камерах сердца, особенно на межжелудочковой перегородке и у устья крупных артериальных стволов - аорты и легочной артерии, а на сухожильных нитях значительно тоньше. По строению она соответствует стенке сосуда.

Поверхность эндокарда, обращенная в полость сердца, выстлана эндотелием, состоящим из полигональных клеток, лежащих на толстой базальной мембране. За ним следует подэндотелиальный слой, образованный соединительной тканью, богатой малодифференцированными соединительнотканными клетками. Глубже располагается мышечно-эластический слой, в котором эластические волокна переплетаются с гладкими мышечными клетками. Эластические волокна гораздо лучше выражены в эндокарде предсердий, чем в желудочках. Гладкие мышечные клетки сильнее всего развиты в эндокарде у места выхода аорты и могут иметь многоотростчатую форму. Самый глубокий слой эндокарда - наружный соединительно-тканный - лежит на границе с миокардом. Он состоит из соединительной ткани, содержащей толстые эластические, коллагеновые и ретикулярные волокна.

Питание эндокарда осуществляется диффузно за счет крови, находящейся в камерах сердца. Кровеносные сосуды имеются лишь в наружном соединительнотканном слое эндокарда.

Клапаны. Между предсердиями и желудочками сердца, а также желудочками и крупными сосудами располагаются клапаны.

Предсердно-желудочковый (атриовентрикулярный) клапан в левой половине сердца двустворчатый, в правой - трехстворчатый. Они представляют собой покрытые эндотелием тонкие фиброзные пластинки из плотной волокнистой соединительной ткани с небольшим количеством клеток. Эндотелиальные клетки, покрывающие клапан, частично покрывают друг друга в виде черепицы или образуют пальцевидные вдавливания цитоплазмы одной клетки в другую. Кровеносных сосудов створки клапанов не имеют. В подэндотелиальном слое выявлены тонкие коллагеновые волокна, которые постепенно переходят в фиброзную пластинку створки клапана, а в месте прикрепления дву- и трехстворчатого клапанов - в фиброзные кольца. В основном веществе створок клапанов много ГАГ.

Строение предсердных и желудочковых частей створок клапанов неодинаково.

Миокард. Мышечная оболочка сердца состоит из тесно связанных между собой поперечнополосатых мышечных клеток - кардиомиоцитов. Между мышечными элементами миокарда располагаются прослойки рыхлой соединительной ткани, сосуды, нервы. Различают кардиомиоциты 2 типов: сократительные (рабочие) сердечные миоциты и проводящие сердечные миоциты, входящие в состав так называемой проводящей системы сердца.

Сердечные сократительные (рабочие) миоциты характеризуются рядом структурных и цитохимических особенностей, отличающих их от проводящих кардиомиоцитов и от волокон скелетной поперечнополосатой мышечной ткани.

Рабочие кардиомиоциты на продольных срезах почти прямоугольной формы, их длина от 50 до 120 мкм, ширина составляет 15-20 мкм. Клетки покрыты сарколеммой, состоящей из плазмолеммы и базальной мембраны, в которую вплетаются тонкие коллагеновые и эластические волокна, образующие «наружный скелет» кардиомиоцитов. Базальная мембрана кардиомиоцитов, содержащая большое количество гликопротеинов, способных связывать Са2+, может принимать участие наряду с саркотубулярной сетью и митохондриями в перераспределении Са2+ в цикле сокращение - расслабление. Базальная мембрана латеральных сторон - кардиомиоцитов инвагинирует в канальцы Т-системы (в отличие от соматических мышечных волокон).

Кардиомиоциты сообщаются между собой в области вставочных дисков. В гистологических препаратах они имеют вид темных полосок. Строение вставочного диска на его протяжении неодинаково. Различают десмосомы, места вплетения миофибрилл в плазмолемму (промежуточные контакты) и щелевые контакты - нексусы. Если первые два участка диска выполняют механическую функцию, то третий осуществляет электрическую связь кардиомиоцитов. Нексусы обеспечивают быстрое проведение импульсов от клетки к клетке. Зоны прикрепления миофибрилл всегда располагаются на уровне, соответствующем очередному Z-диску. С помощью вставочных дисков кардиомиоциты соединяются в мышечные «волокна». Продольные и боковые связи (анастомозы) кардиомиоцитов обеспечивают функциональное единство миокарда.

Между кардиомиоцитами есть интерстициальная соединительная ткань, содержащая много кровеносных и лимфатических капилляров. Каждый миоцит контактирует с 2-3 капиллярами.

Как уже отмечалось, другой разновидностью миоцитов в миокарде являются проводящие сердечные миоциты, входящие в состав так называемой проводящей системы сердца.

Эпикард и перикард

Наружная оболочка сердца, или эпикард, представляет собой висцеральный листок перикарда. Эпикард образован тонкой (не более 0,3-0,4мм) пластинкой соединительной ткани, плотно срастающейся с миокардом. Свободная поверхность ее покрыта мезотелием. В соединительнотканной основе эпикарда различают поверхностный слой коллагеновых волокон, слой эластических волокон, глубокий слой коллагеновых волокон и глубокий коллагеново-эластический слой, который составляет до 50% всей толщи эпикарда. На предсердиях и некоторых участках желудочков последний слой отсутствует или сильно разрыхлен. Здесь же иногда отсутствует и поверхностный коллагеновый слой.

В перикарде соединительнотканная основа развита сильнее, чем в эпикарде. В ней много эластических волокон, особенно в глубоком его слое. Поверхность перикарда, обращенная к перикардиальной полости, тоже покрыта мезотелием. По ходу кровеносных сосудов встречаются скопления жировых клеток. Эпикард и париетальный листок перикарда имеют многочисленные нервные окончания, преимущественно свободного типа.


 

А также другие работы, которые могут Вас заинтересовать

23103. Рівняння Шредингера. Інтерпретація хвильової функції 49 KB
  Рівняння Шредингера. Для цього необхідне рівняння: 1. Рівняння повинно бути лінійним і однорідним хвиля задовольняє принц. Це рівняння Шредингера.
23104. Співвідношення невизначеності Гейзенберга, приклади його проявів 74.5 KB
  Нехай стан частинки опивується хв. Остаточно Співвідношення невизначеностей проявляється при будьякій спробі вимірювання точного положення або точного імпульса частинки. Виявляється що уточнення положення частинки впливає на те що збільшується неточність в значенні імпульса і навпаки. Часто втрачає зміст ділення повної енегрії частинкияк квантового об’єкту на потенціальну і кінетичну .
23105. Сестринский процесс при холециститах 25.25 MB
  Воспаление желчного пузыря регистрируется почти у 10% населения планеты, причем в 3-4 раза чаще холециститом страдают женщины. Большинство людей не следят за своим рационом, ведут сидячий образ жизни.
23106. Теорія молекули водню. Обмінна взаємодія 371 KB
  Оскільки гамільтоніан не залежить від спінових змінних то хвильова функція зображається добутком спінової функції на просторову . За допомогою хвильової функції знаходимо середнє значення повного гамільтоніана системи: де кулонівський інтеграл К характаризує ел. наближені хвильові функції Кулонівський інтеґрал К є малим числом і головну роль відіграє обмінний інтеґрал який у ділянці малих є додатною величиною а при змінює знак. Таким чином для симетричної просторової функції є можливим зв'язаний стан системи і теорія...
23107. Прискорювачі заряджених частинок та принципи їх роботи 62.5 KB
  При непрямих методах прискорення електричне поле індукується змінним магнітним полем або використовується змінне електричне поле у вигляді біжучих або стоячих хвиль. Ідея прискорення заряджених частинок електричним полем яке породжується змінним магнітним полем. Основна складова – потужний електромагніт обмотка якого живиться змінним струмом з частотою сотні МГц. При зміні маг потока з’являється вихрове ел поле і на кожний електрон в камері діє сила eE.
23108. Общая характеристика экономики государственного сектора 262 KB
  Под государственным сектором экономики страны понимают сектор, представляющий и обслуживающий интересы всего населения. Государство является основным институтом, организующим и координирующим взаимоотношения граждан и социальных групп в стране и обеспечивающим условия для их совместной деятельности
23109. Сучасні уявлення про ядерні сили. Моделі атомного ядра 136.5 KB
  За сучасними поглядами сили між нуклонами є виявом сильної кваркглюонної взаємодії. Така частинканосій сильної міжкваркової взаємодії називається глюоном. При взаємодії глюонів з кварками колір кварків змінюється. Аромат кварків їхній електричний та баріонний заряди не змінюються тобто колір є найбільш важливою властивістю кварків при взаємодії.
23110. Теорія молекули водню. Обмінна взаємодія 59.5 KB
  Теорія молекули водню. Відносне розміщення цих центрів атомних ядер визначає просторрову конфігурацію молекули при цьому стійкому рівноважному стану відповідає мінімум енергії молекули. Відносний рух ядер коливання ядер і обертання молекули як цілої – це окремі задачі. Таким чином для Н2 хвильове рівняння можна записати у вигляді: де V – потенціальна енергія молекули V=V1V2 – енергія першого ел.
23111. Методи визначення роботи виходу електрона 973.5 KB
  Методи визначення роботи виходу електрона. Енергію яку потрібно виконати для вибиття електрону з металу або рідини у вакуум називається роботою виходу. Еіон енергія іонізації А – робота виходу електрона за межі поверхні тіла – кін. Величина роботи виходу A в значній мірі залежить від чистоти поверхні емітера.