25696

Взаимодействия клеток в иммунном ответе

Доклад

Биология и генетика

Узнавание рецептором Тхклетки комплекса АГ молекула МНС II класса на поверхности Влимфоцита приводит к секреции Тхклеткой интерлейкинов ИЛ2 ИЛ4 ИЛ5 ИЛ6 гаммаИФН гаммаинтерферона под действием которых Вклетка размножается и дифференцируется с образованием плазматических клеток и Вклеток памяти. Так ИЛ4 инициирует активацию Вклетки ИЛ5 стимулирует пролиферацию активированных Вклеток ИЛ6 вызывает созревание активированных Вклеток и превращение их в плазматические клетки секретирующие антитела. Они регулируют...

Русский

2013-08-17

53.5 KB

2 чел.

Взаимодействия клеток в иммунном ответе

Клеточный иммунный ответ формируется при трансплантации органов и тканей, инфицировании вирусами, злокачественном опухолевом росте. В клеточном иммунитете участвует Тц (Тк), реагирующий с антигеном в комплексе с гликопротеинами МНС I класса в плазматической мембране клетки-мишени. Цитотоксическая Т-клетка убивает клетку, инфицированную вирусом, в том случае, если она узнает с помощью своих рецепторов фрагменты вирусных белков, связанные с молекулами МНС класса I на поверхности зараженной клетки. Связывание Тц с мишенями ведет к высвобождению цитотоксическими клетками порообразующих белков, называемых перфоринами, которые полимеризуются в плазматической мембране клетки-мишени, превращаясь в трансмембранные каналы. Как полагают, эти каналы делают мембрану проницаемой, что способствует гибели клетки.

Гуморальный иммунный ответ обеспечивают макрофаги (антигенпрезентирующие клетки), Тх и В-лимфоциты.

Попавший в организм антиген поглощается макрофагом. Макрофаг расщепляет его на фрагменты, которые в комплексе с молекулами МНС класса II появляются на поверхности клетки. Такая обработка антигена макрофагом называется процессированием  антигена.

Для дальнейшего развития иммунного ответа на антиген необходимо участие Тх. Но прежде Тх должны быть активированы сами. Эта активация происходит тогда, когда антиген, обработанный макрофагом, распознается Тх. «Узнавание» Тх-клеткой комплекса «антиген + молекула МНС II класса» на поверхности макрофага (т.е. специфичное взаимодействие рецептора этого Т-лимфоцита со своим лигандом) стимулирует секрецию интерлейкина-1 (ИЛ-1) макрофагом. Под воздействием ИЛ-1 активизируются синтез и секреция ИЛ-2 Тх-клеткой. Выделение Тх-клеткой ИЛ-2 стимулирует ее пролиферацию. Такой процесс может быть расценен как аутокринная стимуляция, так как клетка реагирует на тот агент, который сама синтезирует и секретирует. Увеличение численности Тх необходимо для реализации оптимального иммунного ответа. Тх активируют В-клетки путем секреции ИЛ-2.

Активация В-лимфоцита происходит также при прямом взаимодействии антигена с иммуноглобулиновым рецептором В-клетки. В-лимфоцит сам процессирует антиген и представляет его фрагмент в комплексе с молекулой МНС II класса на клеточной поверхности. Этот комплекс узнает уже задействованный в иммунной реакции Тх. Узнавание рецептором Тх-клетки комплекса «АГ + молекула МНС II класса» на поверхности В-лимфоцита приводит к секреции Тх-клеткой интерлейкинов — ИЛ-2, ИЛ-4, ИЛ-5, ИЛ-6, гамма-ИФН (гамма-интерферона), под действием которых В-клетка размножается и дифференцируется с образованием плазматических клеток и В-клеток памяти. Так, ИЛ-4 инициирует активацию В-клетки, ИЛ-5 стимулирует пролиферацию активированных В-клеток, ИЛ-6 вызывает созревание активированных В-клеток и превращение их в плазматические клетки, секретирующие антитела. Интерферон привлекает и активирует макрофаги, которые начинают более активно фагоцитировать и разрушать внедрившиеся микроорганизмы.

Передача большого количества переработанных макрофагом антигенов обеспечивает пролиферацию и дифференцировку В-лимфоцитов в направлении образования плазмоцитов, вырабатывающих специфические антитела на конкретный вид антигена.

Т-супрессоры (Тс), подавляют способность лимфоцитов участвовать в выработке антител и таким образом обеспечивают иммунологическую толерантность, т. е. нечувствительность к определенным антигенам. Они регулируют количество образующихся плазматических клеток и количество антител, синтезируемых этими клетками. Оказалось, что тормозить выработку антител может и особая субпопуляция В-лимфоцитов, которые получили название В-супрессоров. Показано, что Т- и В-супрессоры могут действовать подавляюще также на реакции клеточного иммунитета.

Дифференцировка клеток плазматического ряда

Этот процесс проходит в несколько этапов и продолжается в течение суток. Из стимулированных В-лимфоцитов образуются В-лимфобласты, которые размножаются, часть из них приобретает способность к синтезу антител и становится плазмобластами, превращающимися в последующем в проплазмоциты и плазмоциты.

Плазмобласт — крупная клетка, характеризуется наличием большого количества рибосом и небольшим числом уплощенных цистерн гранулярной эндоплазматической сети. Ядро содержит деконденсированный хроматин (эухроматин) и 1—2 больших ядрышка.

Проплазмоцит характеризуется меньшим размером тела клеток, увеличением количества концентрически расположенных узких канальцев шЭПС. Ядро лежит эксцентрично, хроматин более компактный, расположен группами около ядерной мембраны (имеет вид спиц колеса). Около ядра видна зона более светлой цитоплазмы, в которой расположен увеличенный аппарат Гольджи.

Плазмоцит характеризуется появлением большого количества расширенных цистерн шЭПС, заполненных продуцируемыми клеткой иммуноглобулинами. Ядро компактное, расположенное эксцентрично.

Процесс плазмоцитогенеза сопровождается потерей способности клеток к делению и движению и уменьшением количества поверхностных иммуноглобулинов в цитолемме. Продолжительность жизни плазмоцитов составляет несколько недель. Лимфобласты и незрелые плазматические клетки из лимфатических узлов, где они образуются, способны проникать в выносящие лимфатические сосуды и заселять соседние лимфатические узлы. Часть образованных из них мелких клеток, напоминающих по виду лимфоциты, проникает в кровеносные сосуды. Они имеют центрально расположенное ядро, окруженное узким ободком цитоплазмы, в которой видна развитая шЭПС. Эти клетки получили название лимфоплазмоцитое.

Синтез иммуноглобулинов (антител) происходит при участии информационной РНК на рибосомах шЭПС В-лимфоцитов и образуемых из них плазмоцитов. Синтезированные молекулы поступают в просвет цистерн. В В-лимфоцитах первые антитела выявляются в перинуклеарных цистернах. В процессе дальнейшей дифференцировки плазмоцитов антитела находятся во всех цистернах шЭПС.

В зрелых плазмоцитах антитела в перинуклеарных пространствах отсутствуют и исчезают из некоторых цистерн гранулярной сети. К полипептидным частям тяжелых цепей антител присоединяются углеводы (N-ацетил-глюкозамин), и этот комплекс транспортируется в аппарат Гольджи, где и происходит присоединение дополнительных углеводов (галактоза). Из пластинчатого аппарата антитела переносятся на поверхность клетки и выделяются. Наиболее раннее выделение антител на месте действия антигена осуществляется лимфоцитами. Плазмоциты начинают секретировать антитела несколько позднее, но в гораздо большем количестве. Одна плазматическая клетка может продуцировать 3000 молекул антител в сутки. Часть иммуноглобулинов может депонироваться в растянутых цистернах гранулярной эндоплазматической сети.

Макрофаги

Макрофаги играют важную роль как в естественном, так и в приобретенном иммунитете организма. Участие макрофагов в естественном иммунитете проявляется в их способности к фагоцитозу и в синтезе ряда активных веществ — пищеварительных ферментов, компонентов системы комплемента, фагоцитина, лизоцима, интерферона, эндогенного пирогена и др., являющихся основными факторами естественного иммунитета. Их роль в приобретенном иммунитете заключается в пассивной передаче антигена иммунокомпетентным клеткам (Т- и В-лимфоцитам), в индукции специфического ответа на антигены. Макрофаги также участвуют в обеспечении иммунного гомеостаза путем контроля над размножением клеток, характеризующихся рядом отклонений от нормы (опухолевые клетки).

Для оптимального развития иммунных реакций при действии большинства антигенов необходимо участие макрофагов как в первой индуктивной фазе иммунитета, когда они стимулируют лимфоциты, так и в его конечной фазе (продуктивной), когда они участвуют в выработке антител и разрушении антигена. Антигены, фагоцитированные макрофагами, вызывают

более сильный иммунный ответ по сравнению с теми, которые не фагоцитированы ими. Блокада макрофагов введением в организм животных взвеси инертных частиц (например, туши) значительно ослабляет иммунный ответ. Макрофаги способны фагоцитировать как растворимые (например, белки), так и корпускулярные антигены. Корпускулярные антигены вызывают более сильный иммунный ответ.

Некоторые виды антигенов, например пневмококки, содержащие на поверхности углеводный компонент, могут быть фагоцитированы после предварительной опсонизации. Фагоцитоз значительно облегчается, если антигенные детерминанты чужеродных клеток опсонизированы, т.е. соединены с антителом или комплексом антитела и комплемента. Процесс опсонизации обеспечивается присутствием на мембране макрофага рецепторов, которые связывают часть молекулы антитела (Fc-фрагмент) или часть комплемента (С3). С мембраной макрофага у человека непосредственно могут связываться только антитела класса IgG, когда они находятся в комбинации с соответствующим антигеном. IgM могут связываться с мембраной макрофага в присутствии комплемента. Макрофаги способны «распознавать» растворимые антигены, например гемоглобин.

В механизме распознавания антигена выделяют два этапа, тесно связанных друг с другом. Первый этап заключается в фагоцитозе и переваривании антигена. Во втором этапе в фаголизосомах макрофага накапливаются полипептиды, растворимые антигены (сывороточные альбумины) и корпускулярные бактериальные антигены. В одних и тех же фаголизосомах может быть обнаружено несколько введенных антигенов. Изучение иммуногенности различных субклеточных фракций выявило, что наиболее активное антителообразование вызывает введение в организм лизосом. Антиген обнаруживается также в мембранах клеток. Выделяемая макрофагами большая часть переработанного материала антигенов оказывает стимулирующее влияние на пролиферацию и дифференцировку клонов Т- и В-лимфоцитов. Небольшое количество антигенного материала может длительное время сохраняться в макрофагах в виде химических соединений, состоящих не менее чем из 5 пептидов (возможно, в связи с РНК).

В В-зонах лимфатических узлов и селезенки имеются специализированные макрофаги (дендритные клетки), на поверхности многочисленных отростков которых сохраняются многие антигены, попадающие в организм и передающиеся соответствующим клонам В-лимфоцитов. В Т-зонах лимфатических фолликулов расположены интердигитирующие клетки, влияющие на дифференцировку клонов Т-лимфоцитов.

Таким образом, макрофаги принимают непосредственное активное участие в кооперативном взаимодействии клеток (Т- и В-лимфоцитов) в иммунных реакциях организма.

Участие тучных клеток и эозинофилов в иммунных реакциях

При первичном и особенно при повторном введении антигенов наблюдаются увеличение числа тучных клеток, их контакт с макрофагами и массовая дегрануляция. Высказывается предположение, что дегрануляция обусловлена соединением антигена с антителами (IgE), фиксированными на цитолемме. При этом выделяются содержащиеся в гранулах биологически активные вещества (гистамин, серотонин, гепарин), которые могут оказывать неспецифическое стимулирующее влияние на процессы пролиферации и дифференцировки иммунокомпетентных клеток Т- и В-лимфоцитов.

Появление в тканях избытка гистамина приводит к увеличению числа эозинофилов, которые участвуют в его разрушении. Введение в организм большинства антигенов сопровождается увеличением числа эозинофилов в тканях и регионарных лимфатических узлах. В ранней (индуктивной) фазе иммунной реакции, когда происходит «распознавание антигена», эозинофилы, как и тучные клетки, принимают участие в активизации макрофагов. В продуктивной фазе иммунитета (выработка антител) эозинофилы выполняют дезинтоксикационную функцию, участвуя в фагоцитозе и разрушении комплекса антиген — антитело (АГ — AT).

Механизмы интеграции элементов иммунной системы

Иммунная система функционирует как единое целое благодаря наличию центральных неирогуморальных и местных факторов, регулирующих процессы пролиферации и дифференцировки клеток, упорядоченную миграцию, осуществляемую через кровь и лимфу. В эмбриональный период происходит переключение кроветворения из желточного мешка в печень и далее в костный мозг. У взрослых основным поставщиком СКК становится костный мозг, при этом в кровь мигрирует за сутки около 2 % всех стволовых клеток костного мозга. При действии антигенов их число увеличивается в десятки раз. Предполагают, что процесс миграции СКК из костного мозга и их рециркуляция находятся под контролем гормонов гипофиза и надпочечников. Глюкокортикоидные гормоны коры надпочечников препятствуют избыточной миграции СКК и тем самым предохраняют их от «перерасходования».

Циркуляция лимфоцитов зависит также от специфических взаимодействий между поверхностью лимфоцита и поверхностью специализированных эндотелиальных клеток, выстилающих посткапиллярные венулы с высоким эндотелием во вторичных лимфоидных органах: лимфоциты временно прикрепляются к ним, а затем мигрируют через посткапиллярные венулы. Моноклональные антитела, связываясь с поверхностью лимфоцитов и подавляя их способность присоединяться к специализированным эндотелиальным клеткам в срезах тканей, а также циркулировать in vivo, помогают определить различные «homing-рецепторы» на эндотелиоцитах, от которых зависят пути миграции лимфоцитов.

Различают два типа миграции клеток иммунной системы: медленный и быстрый. Продолжительность медленной миграции измеряется неделями. Медленный тип миграции характерен для стволовых клеток и Т-и В-лимфоцитов, заселяющих периферические лимфоидные органы. Быстрый тип миграции (несколько часов) характерен для постоянно рециркулирующих долгоживущих лимфоцитов памяти. Они мигрируют из крови в периферические лимфоидные органы и из них обратно в кровь. Популяция быстро рециркулирующих лимфоцитов содержит главным образом Т-лимфоциты. Большинство медленно мигрирующих клеток относится к В-клеткам. При остром иммунном ответе происходит миграция предшественников эффекторных цитотоксических лимфоцитов и плазмоцитов через кровь и лимфу во все отделы иммунной системы и соединительную ткань, где обеспечиваются условия для иммунного ответа. Число рециркулирующих лимфоцитов в крови человека составляет около 1010.

Рециркулирующие лимфоциты представляют собой основную часть популяции малых лимфоцитов, большинство из которых являются долгоживущими Т-лимфоцитами; меньшее число составляют В-лимфоциты.

Рециркулирующие лимфоциты имеют оптимальную возможность к встрече с любой чужеродной мишенью, которую они сами непосредственно уничтожают, вырабатывая антитела.

Лимфоциты при помощи рецепторов осуществляют «проверку» всех тканей организма, выявляя чужеродный материал. При попадании антигена в периферические лимфоидные органы в зонах его расположения концентрируются Т-лимфоциты. В этих же зонах несколько позднее появляются В-лимфоциты. Происходит взаимодействие макрофагов, Т- и В-лимфоцитов и кооперативное распознавание am тема, приводящее к дифференцировке из В-лимфошггов — клеток памяти и плазмоцитов, продуцирующих антитела.

Лимфоциты памяти живут в течение 20 лет и более. Приобретенное свойство памяти лимфоцитов наследуется.

Таким образом, процессы миграции и рециркуляции клеток иммунной системы обеспечивают поддержание иммунного гомеостаза.


 

А также другие работы, которые могут Вас заинтересовать

30899. Клинико-физиологическая оценка внешнего дыхания. Легочные объемы 36.5 KB
  Легочные объемы Анатомофизиолгические показатели легочные объемы определяются антропометрическими данными индивидуума : 1ростовесовыми показателями 2 строением грудной клетки 3 дыхательных путей 4 строением и свойствами легочной ткани эластическая тяга легких поверхностное натяжение альвеол 5 силой дыхательных мышц Легочные объёмы и ёмкости ОЕЛ ЖЕЛ РОвд ЕВвд ДО РОвыд ФОЕ ОО Коллапсный О Минимальный О Легочные объемы: Общая емкость легких ОЕЛ количество воздуха находящееся в легких после максимального вдоха. ОЕЛ состоит...
30900. Клинико-физиологическая оценка внешнего дыхания. Функциональные показатели 27.5 KB
  Минутный объем дыхания МОД объем воздуха который проходит через легкие за 1 минуту. Этот показатель можно определить двумя методами: с помощью спирографии ДО умножается на частоту дыхания и путем сбора воздуха в мешок Дугласа. МВЛ это максимальное количество воздуха которое может вдохнуть и выдохнуть пациент за 1 минуту ЧД – более 50 уд мин; N=1418. Форсированная жизненная емкость легких ФЖЕЛ количество воздуха которое пациент может выдохнуть за счет экспираторного маневра максимально быстро и полно .
30901. Газообмен в легких и тканях 34 KB
  Газовый состав вдыхаемого альвеолярного и выдыхаемого воздуха Дыхательные газы Вдыхаемый воздух Альвеолярный воздух Выдыхаемый воздух О2 мм рт. в процессе жизнедеятельности идет постоянный процесс потребления О2 и выделения СО2 это поддерживает концентрацию дыхательных газов в нем на постоянном уровне. Обмен газов между альвеолярным воздухом и кровью. Транспорт газов кровью.
30902. Транспорт газов кровью 280.5 KB
  В жидкой части крови растворены газы воздуха: кислород углекислый газ азот. При содержании гемоглобина 150 г л норма каждые 100 мл крови переносят 208 мл О2. Это кислородная емкость крови. Другой показательсодержание кислорода в крови взятой в различных участках сосудистого русла: артериальной 20 мл О2 100 мл крови и венозной 14 млО2 100 мл крови .
30903. Регуляция дыхания 30.5 KB
  Регуляция дыхания Главная задача регуляции дыхания чтобы потребление кислорода поставка его тканям за счет внешнего дыхания были адекватны функциональным потребностям организма. Самый эффективный способ регуляции дыхания в целом это регуляция внешнего дыхания. Интенсивность внешнего дыхания зависит от варьирования его частоты и глубины. В регуляции дыхания можно выделить 3 группы механизмов: 1.
30904. Механизмы перестройки внешнего дыхания 32 KB
  Накопление СО2 в крови гиперкапния стимулирует дыхание человек будет дышать глубже и чаще. СО2 вымывается из крови гипокапния . ещё до повышения уровня СО2 в крови. Регуляция тонуса сосудов легких 1 Ведущая роль принадлежит газовому составу крови: понижение содержания в крови СО2 приводит к повышению тонуса легочных сосудов при этом уменьшается количество крови которое успевает обогатиться в легких О2 за единицу времени; увеличение СО2 наоборот уменьшает тонус легочных сосудов а значит повышается кровоток и газообмен.
30905. Пищеварение и его значение 36.5 KB
  Методы исследования пищеварительного тракта : XVIII век начало формирования научных методов исследования пищеварительного тракта и его функций. Все методы подразделяются на: 1. Острые методы : Характерная особенность острых экспериментов результат быстро как правило однократно условия далеки от физиологических . а вивисекционный метод прижизненное вскрытие ; б метод изоляции органов или участков органов перфузия питатательными растворами чувствительность к БАВ; в методы канюлирования выводных...
30906. Виды моторики пищеварительного тракта 49 KB
  Физиологические свойства и особенности гладкой мускулатуры пищеварительной трубки Гладкая мускулатура пищеварительной трубки состоит из гладкомышечных клеток ГМК. Межклеточные контакты ГМК пищеварительной трубки обеспечивает наличие нексусов. ГМК пищеварительной трубки обладают рядом физиологических свойств: возбудимостью проводимостью и сократимостью. Особенности возбудимости ГМК пищеварительной трубки: Возбудимость ГМК пищеварительной трубки ниже чем у миоцитов поперечнополосатой мускулатуры ППМ.
30907. Пищеварение в полости рта 27.5 KB
  Пищеварение в полости рта Секреция в ротовой полости В ротовой полости слюну вырабатывают 3 пары крупных и множество мелких слюнных желез. 1 Время нахождения пищи в ротовой полости в среднем 1618 секунд. Е нормальная микрофлора ротовой полости которая угнетает патологическую. В пределах ротовой полости ферменты слюны практически не оказывают влияния изза незначительного времени нахождения пищевого комка в ротовой полости.