25698

Селезенка

Доклад

Биология и генетика

На 12й неделе развития селезенки впервые появляются Влимфоциты с иммуноглобулиновыми рецепторами. Толщина капсулы неодинакова в различных участках селезенки. Наиболее толстая капсула в воротах селезенки через которые проходят кровеносные и лимфатические сосуды. Внутрь от капсулы отходят перекладины трабекулы селезенки которые в глубоких частях органа анастомозируют между собой.

Русский

2013-08-17

49 KB

0 чел.

Селезенка

Это — важный кроветворный (лимфопоэтический) и защитный орган, принимающий участие как в элиминации отживающих или поврежденных эритроцитов и тромбоцитов, так и в организации защитных реакций от антигенов, которые проникли в кровоток, а также в депонировании крови.

В селезенке происходят антигензависимая пролиферация и дифференцировка Т- и В-лимфоцитов и образование антител, а также выработка веществ, угнетающих эритропоэз в красном костном мозге. Объем и масса этого органа сильно варьируют в зависимости от депонирования крови и активности процессов кроветворения.

Развитие. У человека селезенка закладывается на 5-й неделе эмбрионального периода развития в толще мезенхимы дорсальной брыжейки. В начале развития селезенка представляет собой плотное скопление мезенхимных клеток, пронизанное первичными кровеносными сосудами. В дальнейшем часть клеток дифференцируется в ретикулярную ткань, которая заселяется стволовыми клетками. На 7—8-й неделе развития в селезенке появляются макрофаги. На 12-й неделе развития селезенки впервые появляются В-лимфоциты с иммуноглобулиновыми рецепторами. Процессы миелопоэза в селезенке человека достигают максимального развития на 5-м месяце внутриутробного периода, после чего активность их снижается и к моменту рождения прекращается совсем. Основную функцию миелопоэза к этому времени выполняет красный костный мозг. Процессы лимфоцитопоэза в селезенке к моменту рождения, наоборот, усиливаются.

На 3-м месяце эмбрионального развития в сосудистом русле селезенки появляются широкие венозные синусы, разделяющие ее на островки. Вначале островки кроветворных клеток располагаются равномерно вокруг артерии (Т-зона), а на 5-м месяце начинается концентрация лимфоцитов и макрофагов сбоку от нее (В-зона). К этому времени популяция В-лимфоцитов, выявляемая при помощи иммунологических методов, примерно в 3 раза превышает популяцию Т-лимфоцитов. Одновременно с развитием узелков происходит формирование красной пульпы, которая становится морфологически различимой на 6-м месяце внутриутробного развития.

Строение. Селезенка человека покрыта соединительнотканной капсулой и брюшиной. Толщина капсулы неодинакова в различных участках селезенки. Наиболее толстая капсула в воротах селезенки, через которые проходят кровеносные и лимфатические сосуды. Капсула состоит из плотной волокнистой соединительной ткани, содержащей фибробласты и многочисленные коллагеновые и эластические волокна. Между волокнами залегает небольшое количество гладких мышечных клеток.

Внутрь от капсулы отходят перекладины - трабекулы селезенки, которые в глубоких частях органа анастомозируют между собой. Капсула и трабекулы в селезенке человека занимают примерно 5—7 % от общего объема органа и составляют его опорно-сократительный аппарат. В трабекулах селезенки человека сравнительно немного гладких мышечных клеток. Эластические волокна в трабекулах более многочисленны, чем в капсуле.

В селезенке различают белую пульпу и красную пульпу. В основе пульпы селезенки лежит ретикулярная ткань, образующая ее строму. Строение селезенки и соотношение между белой и красной пульпой могут изменяться в зависимости от функционального состояния органа.

Строма органа представлена ретикулярными клетками и ретикулярными волокнами, содержащими коллаген III и IV типов.

Белая пульпа селезенки представляет собой совокупность лимфоидной ткани, расположенной в адвентиции ее артерий в виде шаровидных скоплений, или узелков, и лимфатических периартериальных влагалищ. В целом они составляют примерно 1/5 органа.

Лимфатические узелки селезенки 0,3—0,5 мм в диаметре представляют собой скопления Т- и В-лимфоцитов, плазмоцитов и макрофагов в петлях ретикулярной ткани (дендритных клеток), окруженные капсулой из уплощенных ретикулярных клеток. Через лимфатический узелок проходит, обычно эксцентрично, центральная артерия, от которой отходят радиально капилляры.

В лимфатических узелках различают 4 нечетко разграниченные зоны: периартериальную, центр размножения, мантийную и краевую, или маргинальную, зону.

Периартериальная зона занимает небольшой участок узелка около центральной артерии и образована главным образом из Т-лимфоцитов, попадающих сюда через гемокапилляры, отходящие от артерии лимфатического узелка, и интердигитирующих клеток. Субмикроскопические отростки этих клеток вытягиваются на значительное расстояние между окружающими их лимфоцитами и плотно с ними контактируют. Полагают, что эти клетки адсорбируют антигены, поступающие сюда с кровотоком, и передают Т-лимфоцитам информацию о состоянии микроокружения, стимулируя их бласттрансформацию и пролиферацию. В течение 2-3 сут активированные Т-лимфоциты остаются в этой зоне и размножаются. В дальнейшем они мигрируют из периартериальной зоны в синусы краевой зоны через гемокапилляры. Тем же путем попадают в селезенку и В-лимфоциты. Причина заселения Т- и В-лимфоцитами «своих» зон недостаточно ясна. В функциональном отношении периартериальная зона является аналогом паракортикальной тимусзависимой зоны лимфатических узлов.

Центр размножения, или герминативный центр узелка, состоит из ретикулярных клеток и пролиферирующих В-лимфобластов, дифференцирующихся антителообразующих плазматических клеток. Кроме того, здесь нередко можно обнаружить скопления макрофагов с фагоцитированными лимфоцитами или их фрагментами в виде хромофильных телец и дендритные клетки. В этих случаях центральная часть узелка выглядит светлой («реактивный центр»).

На границе со следующей, мантийной зоной обнаруживаются дифференцирующиеся плазмоциты. В функциональном отношении эта область идентична герминативным центрам лимфоидных узелков в лимфатических узлах.

Мантийная зона окружает периартериальную зону и центр размножения, состоит главным образом из плотно расположенных малых В-лимфоцитов и небольшого количества Т-лимфоцитов, а также содержит плазмоциты и макрофаги. Прилегая плотно друг к другу, клетки образуют как бы корону, расслоенную циркулярно направленными толстыми ретикулярными волокнами.

Краевая, или маргинальная, зона узелков селезенки представляет собой переходную область между белой и красной пульпой шириной около 100 мкм. Она состоит преимущественно из Т- и В-лимфоцитов и единичных макрофагов, окружена краевыми, или маргинальными, синусоидными сосудами с щелевидными порами в стенке.

Периартериальные лимфатические влагалища - вытянутые по ходу пульпарной артерии скопления В-лимфоцитов, плазматических клеток, а по периферии влагалища- малых Т-лимфоцитов.

Антигены, приносимые кровью, задерживаются в маргинальной зоне и красной пульпе. Далее они переносятся макрофагами на поверхность антигенпредставляющих клеток (дендритных и интердигитирующих) белой пульпы. Лимфоциты из кровотока оседают в основном в периартериальной зоне (Т-лимфоциты) и в лимфоидных узелках (В-лимфоциты). При первичном иммунном ответе продуцирующие антитела клетки появляются сначала в эллипсоидных муфтах, а затем в красной пульпе. При вторичном ответе формируются центры размножения, где образуются клоны В-лимфоцитов и клетки памяти. Дифференцировка В-лимфоцитов в плазмоциты завершается в красной пульпе. Тимуснезависимые антигены вызывают активацию В-лимфоцитов маргинальных зон. Независимо от вида антигена и способа его введения накопление лимфоцитов в селезенке происходит не столько за счет их пролиферации, сколько за счет притока уже стимулированных антигеном клеток.

Красная пульпа селезенки состоит из ретикулярной ткани с расположенными в ней клеточными элементами крови, придающими ей красный цвет, и многочисленными кровеносными сосудами, главным образом синусоидного типа.

Часть красной пульпы, расположенная между синусами, называется селезеночными, или пульпарными, тяжами. Здесь по аналогии с мозговыми тяжами лимфатических узлов заканчивают свою дифференцировку и секретируют антитела плазмоциты, предшественники которых перемещаются сюда из белой пульпы. Строма заполнена В-, Т-лимфоцитами. В этих местах могут формироваться новые узелки. В красной пульпе задерживаются моноциты, которые дифференцируются в макрофаги.

Селезенка считается «кладбищем эритроцитов» в связи с тем, что обладает способностью понижать осмотическую устойчивость старых или поврежденных эритроцитов. Это приводит эритроциты к гибели. Такие эритроциты поглощаются макрофагами красной пульпы. В результате расщепления гемоглобина поглощенных макрофагами эритроцитов образуются и выделяются в кровоток билирубин и содержащий железо трансферрин. Билирубин переносится в печень, где войдет в состав желчи. Трансферрин из кровотока захватывается макрофагами костного мозга, которые снабжают железом вновь развивающиеся эритроциты.

В селезенке депонируется кровь и скапливаются тромбоциты. Старые тромбоциты подвергаются здесь разрушению.

Синусы красной пульпы, расположенные между селезеночными тяжами, представляют собой часть сложной сосудистой системы селезенки, в связи с чем их следует рассмотреть отдельно.

Васкуляризация. В ворота селезенки входит селезеночная артерия, которая разветвляется на трабекулярные артерии. Наружная оболочка артерий рыхло соединена с тканью трабекул. Средняя оболочка четко заметна на любом срезе трабекулярной артерии благодаря мышечным пучкам, идущим в составе ее стенки по спирали. От трабекулярных артерий отходят пульпарные артерии. В наружной оболочке этих артерий много спирально расположенных эластических волокон, которые обеспечивают продольное растяжение и сокращение сосудов. Недалеко от трабекул в адвентиции пульпарных артерий появляются периартериальные лимфатические влагалища и лимфатические узелки.

Центральная артерия, проходящая через узелок, отдает несколько гемокапилляров и, выйдя из узелка, разветвляется в виде кисточки на несколько кисточковых артериол. Дистальный конец этой артериолы продолжается в эллипсоидную (гильзовую) артериолу, снабженную муфтой («гильзой») из ретикулярных клеток и волокон. Это своеобразный сфинктер на артериоле. У человека эти гильзы развиты очень слабо. В эндотелии гильзовых или эллипсоидных артериол обнаружены сократительные филаменты. Далее следуют короткие артериальные гемокапилляры. Большая часть капилляров красной пульпы впадает в венозные синусы (закрытое кровообращение), однако некоторые могут непосредственно открываться в ретикулярную ткань (открытое кровообращение). Закрытое кровообращение - путь быстрой циркуляции и оксигенации тканей. Открытое кровообращение - более медленное, обеспечивающее контакт форменных элементов крови с макрофагами.

Синусы являются началом венозной системы селезенки. Их диаметр колеблется от 12 до 40 мкм в зависимости от кровенаполнения. При расширении совокупность всех синусов занимает большую часть селезенки. Эндотелиоциты синусов расположены на прерывистой базальной мембране. По поверхности стенки синусов в виде колец залегают ретикулярные волокна. Синусы не имеют перицитов. Во входе в синусы и в месте их перехода в вены имеются подобия мышечных сфинктеров. При открытых артериальных и венозных сфинктерах кровь свободно проходит по синусам в вены. Сокращение венозного сфинктера приводит к накоплению крови в синусе. Плазма крови проникает сквозь стенку синуса, что способствует концентрации в нем клеточных элементов. В случае закрытия венозного и артериального сфинктеров кровь депонируется в селезенке. При растяжении синусов между эндотелиальными клетками образуются щели, через которые кровь может проходить в ретикулярную строму. Расслабление артериального и венозного сфинктеров, а также сокращение гладких мышечных клеток капсулы и трабекул ведет к опорожнению синусов и выходу крови в венозное русло.

Отток венозной крови из пульпы селезенки совершается по системе вен. Трабекулярные вены лишены собственного мышечного слоя; средняя оболочка в них выражена очень слабо. Наружная оболочка вен плотно сращена с соединительной тканью трабекул. Такое строение вен обусловливает их зияние и облегчает выброс крови при сокращении гладких мышечных клеток селезенки. Между артериями и венами в капсуле селезенки, а также между пульпарными артериями встречаются анастомозы.

Иннервация. В селезенке имеются чувствительные нервные волокна (дендриты нейронов спинномозговых узлов) и постганглионарные симпатические нервные волокна из узлов солнечного сплетения. Миелиновые и безмиелиновые (адренергические) нервные волокна обнаружены в капсуле, трабекулах и сплетениях вокруг трабекулярных сосудов и артерий белой пульпы, а также в синусах селезенки. Нервные окончания в виде свободных концевых веточек располагаются в соединительной ткани, на гладких миоцитах трабекул и сосудов, в ретикулярной строме селезенки.

Возрастные изменения. В старческом возрасте в селезенке происходит атрофия белой и красной пульпы, вследствие чего ее трабекулярный аппарат вырисовывается более четко. Количество лимфатических узелков в селезенке и размеры их центров постепенно уменьшаются. Ретикулярные волокна грубеют и становятся более извилистыми. У лиц старческого возраста наблюдаются узловатые утолщения волокон. Количество макрофагов и лимфоцитов в пульпе уменьшается, а число зернистых лейкоцитов и тучных клеток возрастает. У детей и лиц старческого возраста в селезенке обнаруживаются гигантские многоядерные клетки - мегакариоциты. Количество железосодержащего пигмента, отражающее процесс гибели эритроцитов, с возрастом в пульпе увеличивается, но располагается он главным образом внеклеточно.

Регенерация. Физиологическое обновление лимфоидных и стромальных клеток происходит в пределах самостоятельных стволовых дифферонов. Исследования на животных показали возможность восстановления селезенки после удаления 80-90% ее объема (репаративная регенерация). Но полного восстановления органа при этом, как правило, не наблюдается.


 

А также другие работы, которые могут Вас заинтересовать

30886. Электрические проявления сердечной деятельности 45 KB
  Электрические проявления сердечной деятельности Деятельность сердца сопровождается рядом внешних проявлений: Механические 2. Векторкардиография метод регистрации направления электрической оси сердца в ходе сердечного цикла. В 1901 году Эйнтховен с помощью струнного гальванометра впервые зарегистрировал биотоки сердца. Кривая которую Эйнтховен назвал электрокардиограммой регистрировалась с поверхности сердца Тело человека является проводником 2го порядка ионная проводимость следовательно всякое биополе в т.
30887. Функциональная классификация кровеносных сосудов 30.5 KB
  Сердценасос ритмически выбрасывающий кровь в сосуды генератор давления и регулятор расхода крови 2. Сосуды эластического типа принимающие порцию крови за счет растяжения стенок обеспечивают непрерывный пульсирующий ток крови формируют в динамике систолическое и пульсовое давление в большом и малом кругах кровообращения определяют характер пульсовой волны. Сосуды мышечного типа вносят основной вклад в формирования сопротивлению тока крови существенно изменяют свой просвет под действием нервных и гуморальных влияний. Они краны ССС...
30888. Сосудистый тонус 47 KB
  Сосудорасширяющие: а неспецифические метаболиты непрерывно образуются в тканях и в месте образования они всегда препятствуют сужению сосудов а также вызывают их расширение метаболическая регуляция. Сосудосуживающие БАВ при действии в месте выделения образуются специализированными клетками которые входят в состав сосудистого окружения катехоламины серотонин некоторые простагландины эндотелии 1пептид 21на аминокислота продукт инкреции эндотелия сосудов а также тромбоксан А2 выделяемый тромбоцитами при...
30889. Системная гемодинамика 54.5 KB
  Венозный возврат крови к сердцу. Объем циркулирующей крови. Согласно законам гемодинамики количество жидкости Q протекающее через трубку прямо пропорционально разности давлений в начале P1 и в конце Р2 трубы и обратно пропорционально сопротивлению R току жидкости: Если учесть что давление в конце системы Р2 в устьях полых вен в правом предсердии центральное венозное давление близко к нулю то можно записать: где Q количество крови изгнанное сердцем за 1 мин; Ρ величина среднего давления в аорте; R величина общего...
30890. Методы оценки основных показателей гемодинамики 24 KB
  Методы оценки основных показателей гемодинамики Артериальное давление. Боковое измеряется некровавым косвенным методом: а пальпаторный метод РиваРоччи; б аускультативный метод Короткова; в осциллографический метод определяется количественно среднее давление а также систолическое и диастолическое давление. Метод позволяет оценить риск развития гипертонии ее тяжесть дать более точный прогноз развития болезни. Метод разведения красителя.
30891. Регуляция системной гемодинамики 51 KB
  Регуляция системной гемодинамики Система мониторинга АД и ОЦК В организме существует система слежения мониторинга артериального давления и объема циркулирующей крови. Мониторинг осуществляется афферентными системами нервные окончания которых способны воспринимать изменение давления а некоторые из них изменение объема циркулирующей крови. Они информируют об изменениях объема крови. Третья группа вибрационные рецепторы воспринимают изменения давления связанные с вихревым движение крови турбулентностью потока.
30892. Микроциркуляция 49.5 KB
  В зависимости от ультраструктуры стенки выделяют три типа капилляров: соматический висцеральный и синусоидный. Стенка капилляров соматического типа образована сплошным слоем эндотелиальных клеток в мембране которых имеется огромное количество мельчайших пор диаметром 45 нм этот тип капилляров характерен для кожи скелетных и гладких мышц миокарда легких. Стенки таких капилляров хорошо пропускают воду растворенные в ней кристаллоиды малопроницаема для белков. Такой тип капилляров в почках кишечнике эндокринных железах т.
30893. Особенности гемодинамики в различных сосудистых регионах. Легочное кровообращение 39.5 KB
  Очень низкий тонус легочных сосудов т. Мускулатура сосудов легких при снижении pO2 и повышении pCO2 в альвеолярном воздухе сокращается. В ответ на действие гистамина брадикинина дистантное влияние гладкая мускулатура легочных сосудов также сокращается вазоконстриктор ное действие т. пункт 2 Высокая растяжимость кровеносного русла Высокий базальный тонус коронарных сосудов.
30894. Особенности гемодинамики в различных сосудистых регионах. Почечный кровоток 42.5 KB
  Регуляция Миогенная регуляция ауторегуляция Даже небольшое увеличение объемной скорости портального кровотока приводит к повышению тонуса воротной вены и сопряженно констрикцию печеночной артерии. Оба этих механизма направлены на обеспечение постоянства кровотока и давления в синусоидах Гуморальная регуляция Дистантная регуляция Адреналин вызывают сокращение воротной вены в ней альфаадрено рецепторы и дилятации печеночной артерии в ней бетаадренорецепторы и усиливает печеночный кровоток. Норадреналин вызывает констрикцию воротной вены и...