25701

СЕРДЕЧНО-СОСУДИСТАЯ СИСТЕМА

Доклад

Биология и генетика

Часть мезенхимных клеток по периферии островков теряет связь с клетками расположенными в центральной части уплощается и превращается в эндотелиальные клетки первичных кровеносных сосудов. Дальнейшее развитие стенки сосудов происходит после начала циркуляции крови под влиянием тех гемодинамических условий кровяное давление скорость кровотока которые создаются в различных частях тела что обусловливает появление специфических особенностей строения стенки внутриорганных и внеорганных сосудов. В ходе перестроек первичных сосудов в...

Русский

2013-08-17

40 KB

3 чел.

СЕРДЕЧНО-СОСУДИСТАЯ СИСТЕМА

Сердечно-сосудистая система - совокупность органов (сердце, кровеносные и лимфатические сосуды), обеспечивающая распространение по организму крови и лимфы, содержащих питательные и биологически активные вещества, газы, продукты метаболизма.

Кровеносные сосуды

Кровеносные сосуды представляют собой систему замкнутых трубок различного диаметра, осуществляющих транспортную функцию, регуляцию кровоснабжения органов и обмен веществ между кровью и окружающими тканями.

Развитие. Первые кровеносные сосуды появляются в мезенхиме стенки желточного мешка на 2-3-й неделе эмбриогенеза человека, а также в стенке хориона в составе так называемых кровяных островков. Часть мезенхимных клеток по периферии островков теряет связь с клетками, расположенными в центральной части, уплощается и превращается в эндотелиальные клетки первичных кровеносных сосудов. Клетки центра островка округляются, дифференцируются и превращаются в клетки крови. Из мезенхимных клеток, окружающих сосуд, позднее дифференцируются гладкие мышечные клетки, перициты и адвентициальные клетки сосуда, а также фибробласты.

В теле зародыша из мезенхимы образуются первичные кровеносные сосуды, имеющие вид трубочек и щелевидных пространств. В конце 3-й недели внутриутробного развития сосуды тела зародыша начинают сообщаться с сосудами внезародышевых органов.

Дальнейшее развитие стенки сосудов происходит после начала циркуляции крови под влиянием тех гемодинамических условий (кровяное давление, скорость кровотока), которые создаются в различных частях тела, что обусловливает появление специфических особенностей строения стенки внутриорганных и внеорганных сосудов. В ходе перестроек первичных сосудов в эмбриогенезе часть из них редуцируется.

Органные особенности строения кровеносных сосудов

Некоторые отделы сосудистой системы имеют органные особенности строения артерий. Например, артерии черепа отличаются слабым развитием эластических элементов в средней и наружной оболочках; наружной эластической мембраны в них нет. Внутренняя эластическая мембрана, наоборот, отчетлива. Такие же особенности существуют и у артерий головного мозга.

В пупочной артерии отсутствует внутренняя эластическая мембрана. В затылочной артерии сильно развиты пучки гладких мышечных клеток во внутренней оболочке. В почечной, брыжеечной, селезеночной и венечной артериях пучки продольно расположенных гладких мышечных клеток хорошо выражены в наружной оболочке. В артериях матки, полового члена, артериях сосочковых мышц сердца и пупочного канатика, особенно в месте его перехода в плаценту, пучки гладких мышечных клеток находятся и во внутренних, и в наружных оболочках.

Некоторые вены, как и артерии, имеют ярко выраженные органные особенности строения. Так, у легочной и пупочной вен, в отличие от всех других вен, очень хорошо развит циркулярный мышечный слой в средней оболочке, вследствие чего они напоминают по своему строению артерии. Вены сердца в средней оболочке содержат продольно направленные пучки гладких мышечных клеток. В воротной же вене средняя оболочка состоит из двух слоев: внутреннего - кольцевого и наружного - продольного. В некоторых венах, например сердечных, обнаруживаются эластические мембраны, которые способствуют большей упругости и эластичности этих сосудов в постоянно сокращающемся органе. У глубоких вен желудочков сердца нет ни мышечных клеток, ни эластических мембран. Они построены по типу синусоидов, имеющих на дистальном конце вместо клапанов сфинктеры. Вены наружной оболочки сердца содержат продольно направленные пучки гладких мышечных клеток. В надпочечниках есть вены, которые имеют продольные мышечные пучки во внутренней оболочке, выступающие в виде подушечек в просвет вены, особенно в устье. Вены печени, подслизистой основы кишечника, слизистой оболочки носа, вены полового члена и др. снабжены сфинктерами, регулирующими отток крови.

Васкуляризация сосудов. Все крупные и средние кровеносные сосуды имеют для своего питания собственную систему, носящую название «сосуды сосудов». Они приносят артериальную кровь к стенке сосудов из артерий, проходящих в окружающей соединительной ткани. В артериях сосуды сосудов проникают до глубоких слоев средней оболочки. Внутренняя оболочка артерий получает питательные вещества непосредственно из крови, протекающей в данной артерии. В диффузии питательных веществ через внутреннюю оболочку артерий большую роль играют белково-гликозаминогликановые комплексы, входящие в состав основного вещества стенок этих сосудов. Кровеносные капилляры стенок артерий собираются в вены, которые чаще всего попарно сопровождают соответствующую артерию и открываются в близлежащую вену. В венах сосуды сосудов снабжают артериальной кровью все три оболочки. Капилляры стенок вен открываются в просвет той же вены. В крупных лимфатических сосудах артерии и вены, питающие их стенки, идут раздельно.

Кроме кровеносных сосудов, в стенке артерий, вен и лимфатических стволов находятся лимфатические сосуды.

Возрастные изменения. Строение сосудов непрерывно меняется в течение всей жизни человека. Развитие сосудов под влиянием функциональной нагрузки заканчивается примерно к 30 годам. В дальнейшем в стенках артерий происходит разрастание соединительной ткани, что ведет к их уплотнению. В артериях эластического типа этот процесс выражен сильнее, чем в остальных артериях. После 60—70 лет во внутренней оболочке всех артерий обнаруживаются очаговые утолщения коллагеновых волокон, в результате чего в крупных артериях внутренняя оболочка по размерам приближается к средней. В мелких и средних артериях внутренняя оболочка разрастается слабее. Внутренняя эластическая мембрана с возрастом постепенно истончается и расщепляется. Мышечные клетки средней оболочки атрофируются. Эластические волокна подвергаются зернистому распаду и фрагментации, в то время как коллагеновые волокна разрастаются. Одновременно с этим во внутренней и средней оболочках у пожилых людей появляются известковые и липидные отложения, которые прогрессируют с возрастом. В наружной оболочке у лиц старше 60—70 лет возникают продольно лежащие пучки гладких мышечных клеток.

Возрастные изменения в венах сходны с таковыми в артериях. Однако перестройка стенки вены человека начинается еще на первом году жизни. Так, к моменту рождения человека в средней оболочке стенок бедренной и подкожных вен нижних конечностей имеются лишь пучки циркулярно ориентированных мышечных клеток. Только к моменту вставания на ноги (к концу первого года) и повышения дистального гидростатического давления развиваются продольные мышечные пучки. Просвет вены по отношению к просвету артерии у взрослых (2:1) больше, чем у детей (1:1). Расширение просвета вен обусловлено меньшей эластичностью стенки вен, возрастанием у взрослых кровяного давления.

Сосуды сосудов до возраста 50—60 лет, как правило, бывают умеренно спазмированными, после 65—70 лет просвет их расширяется.

Лимфатические сосуды многих органов у лиц старческого возраста характеризуются многочисленными мелкими варикозными вздутиями и выпячиваниями. Во внутренней оболочке стенок крупных лимфатических стволов и грудного протока у людей старше 35 лет увеличивается количество коллагеновых волокон. Этот процесс значительно прогрессирует к 60—70 годам. Одновременно количество мышечных клеток и эластических волокон уменьшается.

Регенерация. Мелкие кровеносные и лимфатические сосуды обладают способностью к регенерации. Восстановление дефектов сосудистой стенки после ее повреждения начинается с регенерации и роста ее эндотелия. Уже к концу первых - началу вторых суток на месте нанесенного повреждения наблюдается многочисленное деление эндотелиальных клеток.

Методом авторадиографии показано, что в регенерации сосудов после травмы принимают участие эндотелиоциты, адвентициальные клетки, а в мелких - и перициты. Включение 3Н-тимидина позволяет регистрировать их высокую пролиферативную активность.

Мышечные клетки поврежденного сосуда, как правило, восстанавливаются более медленно и неполно по сравнению с другими тканевыми элементами сосуда. Восстановление их происходит частично путем деления миоцитов, а также в результате дифференцировки миофибробластов. Эластические элементы развиваются слабо. В случае полного перерыва среднего и крупного сосудов регенерации его стенки без оперативного вмешательства, как правило, не наступает, хотя восстановление циркуляции крови в соответствующей области может наблюдаться очень рано. Это происходит, с одной стороны, благодаря компенсаторной перестройке коллатеральных сосудов, а с другой - вследствие развития и роста новых мелких сосудов - капилляров. Новообразование капилляров начинается с того, что цитоплазма эндотелиальных клеток артериол и венул набухает в виде почки, затем эндотелиальные клетки подвергаются делению. По мере роста эндотелиальной почки в ней появляется полость. Такие слепо заканчивающиеся трубки растут навстречу друг другу и смыкаются концами. Цитоплазматические перегородки между ними истончаются и прорываются, и во вновь образованном капилляре устанавливается циркуляция крови.

Лимфатические сосуды после их повреждения регенерируют несколько медленнее, чем кровеносные. Регенерация лимфатических сосудов может происходить за счет или почкования дистальных концов эндотелиальных трубок, или перестройки лимфатических капилляров в отводящие сосуды.


 

А также другие работы, которые могут Вас заинтересовать

37747. Исследование переходных процессов при разряде конденсатора на резистор и индуктивную катушку 616 KB
  Выполнил: студент группы ПО 222 Принял: Преподаватель УФА 2007 Цель: Исследовать апериодический колебательный разряд конденсатора на резистор и индуктивную катушку.002 202 1271 Формула Томсона: Вывод: Собрав цепь по 1 схеме установив емкость конденсатора 0. В опыте разряда конденсатора на индуктивность рассмотрели случай колебательного затухающего процесса определили период колебательного разряда.
37748. Социологическое понимание личности. Структура личности 15.77 KB
  Личность — это совокупность (система) социально значимых качеств, характеризующих индивида как члена того или иного общества, как продукт общественного развития. Это социальная характеристика человека, которая определяется мерой усвоения им социального опыта.
37750. Визначення перехідної і частотної характеристики систем 1.42 MB
  Мета роботи: Набути практичних навичок вивчення перехідної і частотних характеристик системи за їхніми передаточними функціями.
37751. КЛЮЧЕВОЙ РЕЖИМ РАБОТЫ ТРАНЗИСТОРА 136.97 KB
  Во время переходных процессов при переключении из одного статического состояния в другое транзистор работает в нормальном и инверсном активных режимах. ГТ Т1 г 1кн КК нк вых икэ и ч Основными параметрами переходных процессов являются: при включении ТК 1з время задержки и Сф длительность фронта а при выключении 1рас время рассасывания накопленного в базе заряда и 1с длительность среза. Время задержки {з = твх 1п 1 где твх =КбСвх ; 160 ЕБ1 начальное напряжение на Свх. Временные диаграммы работы транзисторного ключа Для...
37752. Исследование интерференционного светофильтра 402 KB
  Зеркала полупрозрачны так что часть света отражается от них R коэффициент отражения часть поглощается А коэффициент поглощения а часть проходит Т коэффициент пропускания. Основные характеристики ИФ: mx длина волны в максимального пропускания Tmx максимальный коэффициент пропускания Tmin минимальный коэффициент пропускания 05 спектральная полуширина ширина полосы на уровне 05Tmx 2 угловая ширина светового пучка К контраст отношение максимального и минимального коэффициетов пропускания Т R А = 1 для...
37755. ГРАДУИРОВАНИЕ ЭЛЕКТРОСТАТИЧЕСКОГО ВОЛЬТМЕТРА С ПОМОЩЬЮ ЭЛЕКТРОМЕТРА ТОМСОНА 157 KB
  ТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 13 ГРАДУИРОВАНИЕ ЭЛЕКТРОСТАТИЧЕСКОГО ВОЛЬТМЕТРА С ПОМОЩЬЮ ЭЛЕКТРОМЕТРА ТОМСОНА Цель работы: Градуирование шкалы электростатического вольтметра с помощью абсолютного электрометра Томсона т. Стержень крепится к металлическому корпусу В вольтметра с помощью вмонтированной в него пробки из изоляционного материала. Если такой вольтметр проградуировать то им можно измерять разность потенциалов между любыми двумя проводниками...