25731

Многоканальные системы связи. Общие понятия и обобщённая структурная схема многоканальной системы связи

Контрольная

Коммуникация, связь, радиоэлектроника и цифровые приборы

Многоканальные системы связи. Общие понятия и обобщённая структурная схема многоканальной системы связи. Многоканальные системы связи – это системы связи позволяющие передавать по одной линии связи большое число независимых сообщений т. Для унификации многоканальных систем связи за основной или стандартный канал принимают канал тональной частоты канал ТЧ обеспечивающий передачу сообщений с эффективно передаваемой полосой частот 3003400 Гц соответствующей основному спектру телефонного сигнала.

Русский

2013-08-17

78.86 KB

142 чел.

4. Многоканальные системы связи. Общие понятия и обобщённая структурная схема многоканальной системы связи.

   Многоканальные системы связи – это системы связи, позволяющие передавать по одной линии связи большое число независимых сообщений, т.е. использовать линию многократно.

Для унификации многоканальных систем связи за основной или стандартный канал принимают канал тональной частоты (канал ТЧ), обеспечивающий передачу сообщений с эффективно передаваемой полосой частот 300…3400 Гц, соответствующей основному спектру телефонного сигнала.

   Многоканальные системы образуются путем объединения каналов ТЧ в группы, обычно кратные 12 каналам. В свою очередь, часто используют "вторичное уплотнение" каналов ТЧ телеграфными каналами и каналами передачи данных.

На рисунке приведена обобщённая структурная схема системы многоканальной связи.

Обобщённая структурная схема системы многоканальной связи

Реализация сообщений каждого источника а1(t), а2(t),…,аN(t) с помощью индивидуальных передатчиков (модуляторов) М1, М2, …, МN преобразуются в соответствующие канальные сигналы s1(t), s2(t),…,sN(t). Совокупность канальных сигналов на выходе аппаратуры объединения каналов (АОК) образует групповой сигнал s(t). Наконец, в групповом передатчике М сигнал s(t) преобразуется в линейный сигнал sЛ(t), который и поступает в линию связи ЛС. Допустим, что линия пропускает сигнал практически без искажений и не вносит шумов. Тогда на приемном конце линии связи линейный сигнал sЛ(t) с помощью аппаратуры разделения каналов (АРК) может быть вновь преобразован в групповой сигнал s(t). Канальными или индивидуальными приемниками П1, П2, …, ПN из группового сигнала s(t) выделяются соответствующие канальные сигналы s1(t), s2(t), …,sN(t) и затем преобразуются в предназначенные получателям сообщения а1(t), a2(t), …, aN(t).

      Канальные передатчики вместе с суммирующим устройством образуют аппаратуру объединения. Групповой передатчик М, линия связи ЛС и групповой приемник П составляют групповой канал связи (тракт передачи), который вместе с аппаратурой объединения и индивидуальными приемниками составляет систему многоканальной связи.

      Индивидуальные приемники системы многоканальной связи ПK наряду с выполнением обычной операции преобразования сигналов sK(t) в соответствующие сообщения аK(t) должны обеспечить выделение сигналов sK(t) из группового сигнала s(t). Иначе говоря, в составе технических устройств на передающей стороне многоканальной системы должна быть предусмотрена аппаратура объединения, а на приемной стороне – аппаратура разделения.

     Чтобы разделяющие устройства были в состоянии различать сигналы отдельных каналов, должны существовать определенные признаки, присущие только данному сигналу. Такими признаками в общем случае могут быть параметры переносчика, например амплитуда, частота или фаза в случае непрерывной модуляции гармонического переносчика. При дискретных видах модуляции различающим признаком может служить и форма сигналов. Соответственно различаются и способы разделения сигналов: частотный, временной, фазовый и другие.

       

Плезиохронная цифровая иерархия (PDH, Plesiochronous Digital Hierarchy) — цифровой метод передачи данных и голоса, основанный на временном разделении канала и технологии представления сигнала с помощью импульсно-кодовой модуляции (ИКМ)

В последние годы происходит интенсивное внедрение высокоскоростных систем, относящихся к так называемой синхронной цифровой иерархии(SDH).

SDH - это стандарт для высокоскоростных высокопроизводительных оптических сетей связи более известный, как синхронная цифровая иерархия.   Это синхронная цифровая система предназначена для обеспечения простой, экономичной и гибкой инфраструктуры сети связи.

Достоинства SDН.

- Возможность разработки эффективных и гибких сетей связи, основанных на прямом синхронном  мультиплексировании.

- Позволяет выделить сигнал любого уровня иерархии без демультиплексирования основного сигнала.

 - Обеспечение встроенной емкости сигнала для целей управления и эксплуатации сети.

- Обеспечиваются гибкие возможности транспортирования сигнала, предназначенные для существующих и будущих сигналов.

 - Позволяет иметь единую инфраструктуру сети, допускает установку сетевого оборудования от различных производителей.


 

А также другие работы, которые могут Вас заинтересовать

54658. Основные требования безопасности ремонтно-наладочных работ в действующих электроустановках 49.5 KB
  Снимать предупреждающие и запрещающие плакаты можно только после оформления записи в журнале об окончании ремонта СИЗ резиновые галоши резиновые коврики головные уборы спецодежда Ремонтные работы на кабельных линиях электропередач ОПФ при ремонте кабельных линий: возможность повреждения кабелей находящихся под напряжением при их раскопках; разрывы в кабельных линиях обычно в муфтах при недопустимом натяжении; опасность...
54659. Классификация зданий по взрывопожарной опасности 38 KB
  Пожароопасная категория В – помещения в которых находятся горючие трудногорючие жидкости твёрдые материалы; склады для хранения бумаги текстильных трикотажных обувных товаров. Пожароопасная категория Г – помещения где находятся негорючие вещества и материалы в горячем раскалённом состоянии; процесс обработки которых сопровождается выделением лучистого тепла искр и пламени; связанные со сжиганием жидкого твёрдого газообразного топлива. Классификация пожароопасных зон Пожароопасная зона – пространство внутри помещения в...
54660. Общие сведения о гидроприводе 139.5 KB
  Гидросистемы бывают: для подачи жидкости отсутствуют устройства преобразующие энергию жидкости в механическую работу системы водоснабжения зданий охлаждения смазывания машин – класс разомкнутых гидросистем движение жидкости за счет работы насоса; гидравлические приводы – совокупность устройств предназначенных для передачи механической энергии преобразования движения посредством рабочей жидкости – класс замкнутых гидросистем. К ним относят: насосы – гидромашины...
54661. Общие сведения об объемных насосах 1.21 MB
  Объемные насосы по характеру движения рабочего органа: возвратнопоступательные – рабочая камера относительно корпуса неподвижна; имеются впускной и выпускной клапаны для соединения рабочей камеры с полостями всасывания и нагнетания; роторные – рабочая камера подвижна клапаны отсутствуют. Возвратнопоступательные насосы По способу привода: прямодействующие – за счет возвратнопоступательного воздействия непосредственно на вытеснитель простейший насос с ручным приводом; вальные – за счет вращения ведущего вала преобразуемое в...
54662. Физические основы функционирования пневмосистем 792 KB
  Физические основы функционирования пневмосистем продолжение Термодинамические процессы – процессы в двигателях установках компрессорах протекающие при постоянных отдельных параметрах рабочего тела или при переменных всех параметрах. Равновесные термодинамические процессы – процессы проходящие при бесконечно малых перепадах давлений и температур при этом во всех точках термодинамической системы в любой момент времени параметры состояния одинаковы. Неравновесные необратимые термодинамические процессы – процессы проходящие...
54663. Физические основы функционирования пневмосистем 1.66 MB
  В конце адиабатного процесса цилиндр сообщается с холодильником точка D и рабочее тело изотермически сжимается по линии D T = const; давление возрастает объем уменьшается. Знак больше относится к неравновесным процессам; знак равно к равновесным. Получим уравнение изменения энтропии для произвольного термодинамического процесса. T – Sдиаграмма изохорного процесса характеризует тепло процесса.
54664. Компрессоры 339.5 KB
  Компрессоры по принципу действия: а динамические лопастного типа – энергия сообщается потоку газа за счет того что рабочие органы компрессора оказывают силовое воздействие на газ находящийся в его проточной части; их называют турбокомпрессорами – применяют при высокой производительности но невысоком давлении 10  15 атм. Рабочие камеры компрессора образуются поверхностью ротора стенками корпуса пластинами 3 которые свободно перемещаются в пазах ротора и центробежной силой прижимаются к корпусу компрессора. За счет эксцентриситета...
54665. Пневматические двигатели 5.3 MB
  Для осуществления рабочего хода полость C соединяется с атмосферой; канал 4 полости B – перекрывают. Давление в полости C падает; поршень двигается вправо. Как только поршень открывает отверстие m, резко возрастает движущая сила, т.к. сжатый воздух с давлением pвх действует на всю площадь поршня.
54666. Классификация приводов, схемы 1.54 MB
  Классификация приводов схемы Автоматизированный привод самодействующий привод выполняющий работу с частичным участием человека. Автоматический привод – самодействующий привод выполняющий работу без участия человека. Приводы по виду энергии: электрический привод в котором источником механических движений в оборудовании является электродвигатель; пневматический – привод в котором энергия сжатого воздуха или газа пневмодвигателем преобразуется в механическую;...