2582

Статика и кинематика твердого тела

Контрольная

Физика

На схеме показаны три способа закрепления бруса, ось которого – ломаная линия. Задаваемая нагрузка и размеры во всех случаях одинаковы. Определить реакции опор для того способа закрепления бруса, при котором реакция YA имеет наименьший модуль. ...

Русский

2012-11-12

397.78 KB

23 чел.

На схеме показаны три способа закрепления бруса, ось которого – ломаная линия. Задаваемая нагрузка и размеры во всех случаях одинаковы. Определить реакции опор для того способа закрепления бруса, при котором реакция YA имеет наименьший модуль.

Схема:

Дано:

Решение:

Рассмотрим систему уравновешивающихся сил, приложенных к конструкции. Действие связей на конструкцию заменяем их реакциями Xa, Ya, Ma. Равномерно распределенную нагрузку интенсивностью q заменяем равнодействующей Q:

а)

б)

в)

Чтобы выяснить, в каком случае модуль в заделке является наименьшим, используем сумму моментов сил относительно точки B для всех трех схем.

Для схемы а:

Подставим числовые значения:

Для схемы б:

Подставим числовые значения:

Для схемы в:

Таким образом, наименьший момент в заделке получается при закреплении бруса по схеме в. Определим остальные опорные реакции для этой схемы:

Ответ:

Реакция YA имеет наименьший модуль в третьем способе закрепления бруса.


С2. Определение реакций опор и сил в стержнях плоской фермы

Задание:

Определить реакции опор фермы от заданной нагрузки, а также силы во всех ее стержнях способом вырезания узлов.

Дополнительно определить силы в трех стержнях фермы от той же нагрузки способом Риттера.

Схема:

Дано:

Решение:

Покажем внешние силы, приложенные к ферме: активные(задаваемые) силы и реакции опор А и В.

Т.к. линия действия реакции опоры А неизвестна, определим ее составляющие по координатным осям и  .

Составим уравнения равновесия сил, приложенных к ферме:

По закону сохранения импульса:

Спроецируем силы на ось OX:

Спроецируем силы на ось OY:

Определение сил в стержнях фермы способом вырезания узлов.

Стержни, сходящиеся в узле фермы, являются для узловых соединений – связями. Заменим действие связей на узлы реакциями.

Направления реакций всех стержней показаны от узлов внутрь стержней в предположении, что стержни растянуты. Если в результате решения получится отрицательная реакция, это будет означать, что соответствующий стержень сжат.

Для каждого узла составляются 2 уравнения равновесия:

и .

  1.  Рассмотрим узел А:

  1.  Рассмотрим узел B:

  1.  Рассмотрим узел E:

  1.  Рассмотрим узел L:

  1.  Рассмотрим узел С:

  1.  Рассмотрим узел D:

  1.  Рассмотрим узел F:

Ответ:

Результаты вычислений представлены в виде таблицы:

Номер стержня

1

2

3

4

5

6

7

8

9

10

11

12

13

Знак силы

+

+

-

+

-

-

-

-

+

+

-

-

Сила, кН

2

2

2.83

2

2.83

4.5

6.5

2.5

6.86

0

4.5

6.36

4.5

Определение сил в стержнях способом сечений (способом Риттера). Требуется определить силы в стержнях 4, 5 и 10. По способу Риттера каждая сила должна выражаться из отдельного уравнения и не должна выражаться через силы в других стержнях. Для определения сил мысленно разрезаем ферму I-I.

По-прежнему условно предполагается, что все стержни растянуты. Т.о. если в ответе появится минус – это свидетельствует, что данный стержень сжат.

  1.  За точкой Риттера примем точку С. Пересекающиеся в ней силы исключаются из уравнения.

 

Составим уравнение моментов сил относительно точки С:

2) Точкой Риттера для стержней 2 и 6 является узел, где пересекаются линии действия сил S6 и S10, исключаемых из уравнения.

Составим уравнение моментов сил относительно точки D:

Ответ:

Найденные методом Риттера значения сил:


С3. Определение реакций опор составной конструкции

Задание:

Конструкция состоит из двух частей. Установить, при каком способе соединения частей конструкции модуль реакции наименьший, и для этого варианта соединения определить реакции опор, а также соединения С.

Схема:

Дано:

Решение:

Для упрощения вычислений момента силы разложим её на вертикальную и горизонтальную составляющие:

Равномерно распределённую нагрузку q заменяем равнодействующей:

Действие связей на конструкции заменим их реакциями

Определение реакций опоры А при шарнирном соединении в точке С.

Рассмотрим систему уравновешенных сил, приложенных ко всей конструкции.

Составим уравнение моментов сил относительно точки B.

 

Рассмотрим систему уравновешивающихся сил, приложенных к части конструкции расположенной левее С.

Выразим XA из 2 уравнения и подставим в 1.

Определение реакций опоры А при соединении частей конструкции в точке С скользящей заделкой.

Системы сил соответствуют уравнению 1

Рассмотрим левую, относительно точки С, часть схемы.

При соединении в точке С скользящей заделкой модуль реакции опоры А меньше, чем при шарнирном соединении. Рассчитаем остальные реакции для соединения с помощью скользящей заделки.

Рассмотрим левую часть схемы, относительно точки С.

Рассмотрим правую часть схемы, относительно точки С.:

Ответ:

При соединении в точке С скользящей заделкой модуль реакции опоры А меньше, чем при шарнирном соединении. Реакции для этого соединения:


С5. Равновесие сил с учетом сцепления (трения покоя)

Задание:

Определить максимальное значение силы P и реакции опор системы в точках A, B, C и D, находящиеся в покое. Учесть сцепление в двух опорных точках тела весом G.

Схема:

Дано:

Решение:

Рассмотрим сначала систему уравновешенных сил, приложенных к телу весом G. К телу приложена сила , нормальные составляющие реакции и , а также касательные составляющие силы сцепления и (силы трения покоя).

Схема:

Составим три уравнения равновесия указанных сил:

 

В случае предельного равновесия . В этом случае силы сцепления (силы трения покоя) принимают экстремальные значения, а система уравнений дополняется неравенствами.

Решая систему всех этих уравнений, получаем:

Совокупность сил и , и образуют соответственно опорные реакции в точках D и Е.

Рассмотрим теперь равновесие сил и приложенных ко всей системе.

Решая эти уравнения, получим:

Ответ:

Искомые реакции и силы приведены в таблице.

RA, Н

RB, кН

NC, Н

FсцС, Н

ND, кН

FсцD, Н

Pmax, Н

427

1.57

314

563

1.61

110

877


С8. Определение положения центра тяжести тела

Задание:

Найти координаты центра тяжести объёма.

Схема:

Решение:

Координаты центра тяжести плоской фигуры определяем по формулам:

Здесь F – объём фигуры.

Чтобы воспользоваться формулами, делим объём на части, для которых известны или легко определяются объёмы Fi и координаты центров тяжести xi,yi и zi.

Все расчетные данные заносим в таблицу:

Номер элемента:

Fi, см2

xi, см

yi, см

zi, см

,см3

,см3

,см3

1

30000

40

12.5

7.5

1200000

375000

225000

2

-294.524

55

13

7.5

-16198.82

-3828,81

-2208,93

3

2000

13.33

5

3.33

26666.67

10000

6660

Σ

31705.476

1210467,85

381171,19

229451,07

Ответ:

Искомые координаты центра всего объёма:


Кинематика

К1. Определение скорости и ускорения точки по заданным уравнениям ее движения

Задание:

По заданным уравнениям движения точки М установить вид ее траектории и для момента времени t=t1 найти  положение точки на траектории, ее скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории.

Дано:

Дополнительное задание:

Решение:

Уравнения движения можно рассматривать как параметрические уравнения траектории точки. Чтобы получить уравнения траектории в координатной форме, исключим время t из уравнений:

Вектор скорости точки:

Вектор ускорения точки:

Здесь - орты осей x и y. Ux, Uy, ax, ay – проекции скорости и ускорения точки на оси координат. Найдем их дифференцируя по времени уравнения движения:

Найдем значения координат в точке М, подставив в заданные уравнения t1:

Проекцию скорости на OY найдем, подставив t в уравнение:

По найденным проекциям определяется модуль скорости точки:

Теперь определим по проекциям модуль ускорения:

Модуль касательного ускорения точки:

Модуль нормального ускорения точки:

После того как найдено нормальное ускорение, радиус кривизны окружности определяется из выражения:

Дополнительное задание. Движение по пространственной траектории.

Для расчета к двум уравнения движения добавляется еще и третье.

Найдем третью координату точки М:

Определим из третьего уравнения скорость и ускорение.

Найдем модуль скорости из проекций:

Т.к. проекция ускорения равна нулю, следовательно, третья координата не повлияет на значения ускорений точки.

Ответ:

Координаты, см

Скорость, см/с

Ускорение, см/с2

Радиус кривизны, см

x

y

Ux

Uy

U

ax

ay

a

aτ

an

-2.563

1.25

3.5

5

6.1

14

0

14

8.033

11.475

3.243

При добавлении третьей координаты: z=0.25, Uz=1, U=6.2. Все остальные значения остаются неизменными.


К2. Определение скоростей и ускорений точек твердого тела при поступательном и вращательном движениях

Задание:

Движение груза описывается уравнением:

,

где t – время, с1, с2, с0 – некоторые постоянные.

В начальный момент времени(t=0) положение груза определяется координатой x0, и имеет скорость U0. Учесть, что в момент времени t=t2 координата груза равна x2.

Определить коэффициенты c0, c1, c2, при которых осуществляется требуемое движение груза 1. Определить также в момент времени t=t1 скорость и ускорение груза и точки М одного из колес механизма.

Схема:

Дано:

Решение:

Уравнение движения груза 1 имеет вид:

Коэффициенты c0, c1, c2 могут быть определены из следующих условий:

  1.  При t0=0:

  1.  При t2=2 c и x2=103 см:

Таким образом, уравнение движения груза 1 имеет следующий вид:

Тогда уравнение скорости:

Ускорение найдем, взяв производную по уравнению скорости:

Для определения скорости и ускорения точки М запишем уравнения, связывающие скорость груза U и угловые скорости w2 и w3.

В соответствии со схемой механизма:

Выразим из двух уравнений угловую скорость 2. Затем приравняем правые части и из получившегося уравнения можно будет найти угловую скорость 3:

Подставив сюда уравнение скорости, получим уравнение угловой скорости 3:

Угловое ускорение – первая производная по угловой скорости:

Скорость точки М, ее вращательное, центростремительное и полное ускорения определяются по формулам:

Ответ: результаты вычислений для заданного момента времени приведены в таблице:

U, см/с

a, см/с2

w3, рад/с

ε3, рад/с2

Uм, см/с

амц, см/с2

амц, см/с2

ам, см/с2

48

42

2.743

2.4

96

263.342

84

276.414


К3. Кинематический анализ плоского механизма

Задание:

Найти для заданного положения механизма скорости и ускорения точек В и С, а также угловую скорость и угловое ускорение звена, которому эти точки принадлежат.

Схема:

Дано:

Решение:

Определение скоростей точек и угловой скорости звена.

Вычисляем модуль скорости пальца А кривошипа ОА при заданном положении механизма:

Теперь начертим схему, где PAB – мгновенный центр скоростей АВ шатуна:

Угловая скорость звена АВ:

Модули скоростей точек В и С:

Из полученного чертежа получим:

Вычислим угловую скорость звена АВ:

Теперь вычислим скорости точек В и С:

Определение ускорений точек и углового ускорения звена:

Ускорение точки А складывается из вращательного и центростремительного ускорений.

Согласно теореме об ускорениях точек плоской фигуры.

По формулам найдем ускорения звена АВ и точки А:

Вектор направлен от А к О. Вектор направлен перпендикулярно к нему и направлен в сторону UA(Вращение кривошипа - ускоренное).

Вектор направлен от В к А. Известны только линии действия этих векторов: - по вертикали, вдоль направляющих ползуна;  - перпендикулярно АВ. Зададимся произвольно их направлениями по указанным линиям. Эти ускорения определим из уравнений проекций векторного равенства на оси координат. Знак в ответе показывает, истинное ли направление вектора было выбрано.

Выбрав направление осей x и y получаем:

  1.  Проекция на ось OX:

  1.  Проекция на ось OY:

Теперь найдем угловое ускорение АВ:

Направление ускорения относительно полюса А определяет направление углового ускорения εАВ. Здесь под направлением углового ускорения подразумевается направление дуговой стрелки, которое при ускоренном вращении звена совпадает с направлением его вращения.

Определяем ускорение точки С:

Найдем проекции ускорения С:

Ответ:

Результаты вычислений для заданного положения механизма приведены в таблице:

υB,см/с

υC,см/с

ас, см/с2

ав, см/с2

εАВ, рад/с2

wAB, рад/с

140

103.393

362.424

1152.62

24.3

3.333


 

А также другие работы, которые могут Вас заинтересовать

21957. Изучение инженерно-геологических условий (региональные, локальные, отдельных объектов и сооружений) 165 KB
  Особенности инженерногеологических свойств грунтов Данные о инженерногеологических и физикомеханических свойствах пород используются при детальном инженерногеологическом картировании инженерногеологических изысканиях для различных видов наземного и подземного строительства и др. Физикомеханическими свойствами горных пород следует называть такие которые определяют их физическое состояние отношение к воде и закономерности изменения прочности и деформируемости. Физикомеханические свойства рыхлых песчаноглинистых отложений существенно...
21958. Методы инженерно-геологических исследований 1.03 MB
  Методы инженерногеологических исследований. Общая систематизация методов инженерногеологических исследований. Новые методы и способы проведения инженерногеологических исследований в РБ. Общая систематизация методов инженерногеологических исследований.
21959. Процесс разработки интерфейса 217 KB
  При этом важно понимать что здесь описываются только методы создания новой системы. Система автоматизации например может быть эффективно использована только в том случае когда пользователь этой системы понимает суть автоматизируемых процессов. Это значит что концепции и суть сложной системы могут быть безболезненно вынесены из интерфейса в документацию освобождая ресурсы дизайнера. Побочным свойством новой системы компьютера Макинтош было то что его интерфейс был понятен и удобен в работе.
21960. Критерии качества интерфейса. Скорость выполнения работы 80 KB
  Скорость выполнения работы Длительность выполнения работы пользователем состоит из длительности восприятия исходной информации длительности интеллектуальной работы в смысле – пользователь думает что он должен сделать длительности физических действий пользователя и длительности реакции системы. Как правило длительность реакции системы является наименее значимым фактором.1 Длительность интеллектуальной работы Взаимодействие пользователя с системой не только компьютерной состоит из семи шагов: 1 формирование цели действий 2 определение...
21961. Критерии качества интерфейса. Человеческие ошибки 237.5 KB
  Длительность выполнения работы пользователем состоит из длительности восприятия исходной информации длительности интеллектуальной работы в смысле – пользователь думает что он должен сделать длительности физических действий пользователя и длительности реакции системы. Длительность интеллектуальной работы Взаимодействие пользователя с системой не только компьютерной состоит из семи шагов: 1 формирование цели действий 2 определение общей направленности действий 3 определение конкретных действий 4 выполнение действий 5 восприятие нового...
21962. Критерии качества интерфейса. Субъективное удовлетворение 300.5 KB
  Это значит что пользователь обучится пользоваться программой или сайтом только в том случае если он будет уверен что это к примеру сделает его жизнь легче и приятней. Пользователь будет учиться какойлибо функции только если он знает о её существовании поскольку не обладая этим знанием он не способен узнать что за её использование жизнь даст ему награду. одного стимула недостаточно если пользователь не знает за что этот стимул дается. Что нам нужно и что у нас есть Количество подсистем справки нужных для того чтобы пользователь...
21963. Критерии качества интерфейса 171 KB
  Кратковременная память Свойства а точнее ограничения кратковременной памяти КВП являются очень важными факторами при разработке интерфейса. Дело в том что вся обработка поступающей информации производится в КВП в этом кратковременная память сходна с ОЗУ в компьютерах. Сходство однако не является полным так что думать о КВП как об ОЗУ не стоит. Что попадает в КВП.
21964. Составные части программного интерфейса 139.5 KB
  Кнопки Кнопкой называется элемент управления всё взаимодействие пользователя с которым ограничивается одним действием – нажатием. Эта формулировка кажущаяся бесполезной и примитивной на самом деле очень важна поскольку переводит в гордое звание кнопок многие элементы управления которые как кнопки по большей части не воспринимаются. Командные кнопки Нажатие на такую кнопку запускает какоелибо явное действие поэтому правильнее называть такие кнопки кнопками прямого действия. С точки зрения разработчика ПО для настольных систем...
21965. Составные части программного интерфейса. Элементы управления 242.5 KB
  Меню При упоминании применительно к интерфейсу термина меню большинство людей немедленно представляют стандартные раскрывающиеся меню. В действительности понятие меню гораздо шире. Меню – это метод взаимодействия пользователя с системой при котором пользователь выбирает из предложенных вариантов а не предоставляет системе свою команду. Соответственно диалоговое окно с несколькими кнопками и без единого поля ввода также является меню.