2582

Статика и кинематика твердого тела

Контрольная

Физика

На схеме показаны три способа закрепления бруса, ось которого – ломаная линия. Задаваемая нагрузка и размеры во всех случаях одинаковы. Определить реакции опор для того способа закрепления бруса, при котором реакция YA имеет наименьший модуль. ...

Русский

2012-11-12

397.78 KB

23 чел.

На схеме показаны три способа закрепления бруса, ось которого – ломаная линия. Задаваемая нагрузка и размеры во всех случаях одинаковы. Определить реакции опор для того способа закрепления бруса, при котором реакция YA имеет наименьший модуль.

Схема:

Дано:

Решение:

Рассмотрим систему уравновешивающихся сил, приложенных к конструкции. Действие связей на конструкцию заменяем их реакциями Xa, Ya, Ma. Равномерно распределенную нагрузку интенсивностью q заменяем равнодействующей Q:

а)

б)

в)

Чтобы выяснить, в каком случае модуль в заделке является наименьшим, используем сумму моментов сил относительно точки B для всех трех схем.

Для схемы а:

Подставим числовые значения:

Для схемы б:

Подставим числовые значения:

Для схемы в:

Таким образом, наименьший момент в заделке получается при закреплении бруса по схеме в. Определим остальные опорные реакции для этой схемы:

Ответ:

Реакция YA имеет наименьший модуль в третьем способе закрепления бруса.


С2. Определение реакций опор и сил в стержнях плоской фермы

Задание:

Определить реакции опор фермы от заданной нагрузки, а также силы во всех ее стержнях способом вырезания узлов.

Дополнительно определить силы в трех стержнях фермы от той же нагрузки способом Риттера.

Схема:

Дано:

Решение:

Покажем внешние силы, приложенные к ферме: активные(задаваемые) силы и реакции опор А и В.

Т.к. линия действия реакции опоры А неизвестна, определим ее составляющие по координатным осям и  .

Составим уравнения равновесия сил, приложенных к ферме:

По закону сохранения импульса:

Спроецируем силы на ось OX:

Спроецируем силы на ось OY:

Определение сил в стержнях фермы способом вырезания узлов.

Стержни, сходящиеся в узле фермы, являются для узловых соединений – связями. Заменим действие связей на узлы реакциями.

Направления реакций всех стержней показаны от узлов внутрь стержней в предположении, что стержни растянуты. Если в результате решения получится отрицательная реакция, это будет означать, что соответствующий стержень сжат.

Для каждого узла составляются 2 уравнения равновесия:

и .

  1.  Рассмотрим узел А:

  1.  Рассмотрим узел B:

  1.  Рассмотрим узел E:

  1.  Рассмотрим узел L:

  1.  Рассмотрим узел С:

  1.  Рассмотрим узел D:

  1.  Рассмотрим узел F:

Ответ:

Результаты вычислений представлены в виде таблицы:

Номер стержня

1

2

3

4

5

6

7

8

9

10

11

12

13

Знак силы

+

+

-

+

-

-

-

-

+

+

-

-

Сила, кН

2

2

2.83

2

2.83

4.5

6.5

2.5

6.86

0

4.5

6.36

4.5

Определение сил в стержнях способом сечений (способом Риттера). Требуется определить силы в стержнях 4, 5 и 10. По способу Риттера каждая сила должна выражаться из отдельного уравнения и не должна выражаться через силы в других стержнях. Для определения сил мысленно разрезаем ферму I-I.

По-прежнему условно предполагается, что все стержни растянуты. Т.о. если в ответе появится минус – это свидетельствует, что данный стержень сжат.

  1.  За точкой Риттера примем точку С. Пересекающиеся в ней силы исключаются из уравнения.

 

Составим уравнение моментов сил относительно точки С:

2) Точкой Риттера для стержней 2 и 6 является узел, где пересекаются линии действия сил S6 и S10, исключаемых из уравнения.

Составим уравнение моментов сил относительно точки D:

Ответ:

Найденные методом Риттера значения сил:


С3. Определение реакций опор составной конструкции

Задание:

Конструкция состоит из двух частей. Установить, при каком способе соединения частей конструкции модуль реакции наименьший, и для этого варианта соединения определить реакции опор, а также соединения С.

Схема:

Дано:

Решение:

Для упрощения вычислений момента силы разложим её на вертикальную и горизонтальную составляющие:

Равномерно распределённую нагрузку q заменяем равнодействующей:

Действие связей на конструкции заменим их реакциями

Определение реакций опоры А при шарнирном соединении в точке С.

Рассмотрим систему уравновешенных сил, приложенных ко всей конструкции.

Составим уравнение моментов сил относительно точки B.

 

Рассмотрим систему уравновешивающихся сил, приложенных к части конструкции расположенной левее С.

Выразим XA из 2 уравнения и подставим в 1.

Определение реакций опоры А при соединении частей конструкции в точке С скользящей заделкой.

Системы сил соответствуют уравнению 1

Рассмотрим левую, относительно точки С, часть схемы.

При соединении в точке С скользящей заделкой модуль реакции опоры А меньше, чем при шарнирном соединении. Рассчитаем остальные реакции для соединения с помощью скользящей заделки.

Рассмотрим левую часть схемы, относительно точки С.

Рассмотрим правую часть схемы, относительно точки С.:

Ответ:

При соединении в точке С скользящей заделкой модуль реакции опоры А меньше, чем при шарнирном соединении. Реакции для этого соединения:


С5. Равновесие сил с учетом сцепления (трения покоя)

Задание:

Определить максимальное значение силы P и реакции опор системы в точках A, B, C и D, находящиеся в покое. Учесть сцепление в двух опорных точках тела весом G.

Схема:

Дано:

Решение:

Рассмотрим сначала систему уравновешенных сил, приложенных к телу весом G. К телу приложена сила , нормальные составляющие реакции и , а также касательные составляющие силы сцепления и (силы трения покоя).

Схема:

Составим три уравнения равновесия указанных сил:

 

В случае предельного равновесия . В этом случае силы сцепления (силы трения покоя) принимают экстремальные значения, а система уравнений дополняется неравенствами.

Решая систему всех этих уравнений, получаем:

Совокупность сил и , и образуют соответственно опорные реакции в точках D и Е.

Рассмотрим теперь равновесие сил и приложенных ко всей системе.

Решая эти уравнения, получим:

Ответ:

Искомые реакции и силы приведены в таблице.

RA, Н

RB, кН

NC, Н

FсцС, Н

ND, кН

FсцD, Н

Pmax, Н

427

1.57

314

563

1.61

110

877


С8. Определение положения центра тяжести тела

Задание:

Найти координаты центра тяжести объёма.

Схема:

Решение:

Координаты центра тяжести плоской фигуры определяем по формулам:

Здесь F – объём фигуры.

Чтобы воспользоваться формулами, делим объём на части, для которых известны или легко определяются объёмы Fi и координаты центров тяжести xi,yi и zi.

Все расчетные данные заносим в таблицу:

Номер элемента:

Fi, см2

xi, см

yi, см

zi, см

,см3

,см3

,см3

1

30000

40

12.5

7.5

1200000

375000

225000

2

-294.524

55

13

7.5

-16198.82

-3828,81

-2208,93

3

2000

13.33

5

3.33

26666.67

10000

6660

Σ

31705.476

1210467,85

381171,19

229451,07

Ответ:

Искомые координаты центра всего объёма:


Кинематика

К1. Определение скорости и ускорения точки по заданным уравнениям ее движения

Задание:

По заданным уравнениям движения точки М установить вид ее траектории и для момента времени t=t1 найти  положение точки на траектории, ее скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории.

Дано:

Дополнительное задание:

Решение:

Уравнения движения можно рассматривать как параметрические уравнения траектории точки. Чтобы получить уравнения траектории в координатной форме, исключим время t из уравнений:

Вектор скорости точки:

Вектор ускорения точки:

Здесь - орты осей x и y. Ux, Uy, ax, ay – проекции скорости и ускорения точки на оси координат. Найдем их дифференцируя по времени уравнения движения:

Найдем значения координат в точке М, подставив в заданные уравнения t1:

Проекцию скорости на OY найдем, подставив t в уравнение:

По найденным проекциям определяется модуль скорости точки:

Теперь определим по проекциям модуль ускорения:

Модуль касательного ускорения точки:

Модуль нормального ускорения точки:

После того как найдено нормальное ускорение, радиус кривизны окружности определяется из выражения:

Дополнительное задание. Движение по пространственной траектории.

Для расчета к двум уравнения движения добавляется еще и третье.

Найдем третью координату точки М:

Определим из третьего уравнения скорость и ускорение.

Найдем модуль скорости из проекций:

Т.к. проекция ускорения равна нулю, следовательно, третья координата не повлияет на значения ускорений точки.

Ответ:

Координаты, см

Скорость, см/с

Ускорение, см/с2

Радиус кривизны, см

x

y

Ux

Uy

U

ax

ay

a

aτ

an

-2.563

1.25

3.5

5

6.1

14

0

14

8.033

11.475

3.243

При добавлении третьей координаты: z=0.25, Uz=1, U=6.2. Все остальные значения остаются неизменными.


К2. Определение скоростей и ускорений точек твердого тела при поступательном и вращательном движениях

Задание:

Движение груза описывается уравнением:

,

где t – время, с1, с2, с0 – некоторые постоянные.

В начальный момент времени(t=0) положение груза определяется координатой x0, и имеет скорость U0. Учесть, что в момент времени t=t2 координата груза равна x2.

Определить коэффициенты c0, c1, c2, при которых осуществляется требуемое движение груза 1. Определить также в момент времени t=t1 скорость и ускорение груза и точки М одного из колес механизма.

Схема:

Дано:

Решение:

Уравнение движения груза 1 имеет вид:

Коэффициенты c0, c1, c2 могут быть определены из следующих условий:

  1.  При t0=0:

  1.  При t2=2 c и x2=103 см:

Таким образом, уравнение движения груза 1 имеет следующий вид:

Тогда уравнение скорости:

Ускорение найдем, взяв производную по уравнению скорости:

Для определения скорости и ускорения точки М запишем уравнения, связывающие скорость груза U и угловые скорости w2 и w3.

В соответствии со схемой механизма:

Выразим из двух уравнений угловую скорость 2. Затем приравняем правые части и из получившегося уравнения можно будет найти угловую скорость 3:

Подставив сюда уравнение скорости, получим уравнение угловой скорости 3:

Угловое ускорение – первая производная по угловой скорости:

Скорость точки М, ее вращательное, центростремительное и полное ускорения определяются по формулам:

Ответ: результаты вычислений для заданного момента времени приведены в таблице:

U, см/с

a, см/с2

w3, рад/с

ε3, рад/с2

Uм, см/с

амц, см/с2

амц, см/с2

ам, см/с2

48

42

2.743

2.4

96

263.342

84

276.414


К3. Кинематический анализ плоского механизма

Задание:

Найти для заданного положения механизма скорости и ускорения точек В и С, а также угловую скорость и угловое ускорение звена, которому эти точки принадлежат.

Схема:

Дано:

Решение:

Определение скоростей точек и угловой скорости звена.

Вычисляем модуль скорости пальца А кривошипа ОА при заданном положении механизма:

Теперь начертим схему, где PAB – мгновенный центр скоростей АВ шатуна:

Угловая скорость звена АВ:

Модули скоростей точек В и С:

Из полученного чертежа получим:

Вычислим угловую скорость звена АВ:

Теперь вычислим скорости точек В и С:

Определение ускорений точек и углового ускорения звена:

Ускорение точки А складывается из вращательного и центростремительного ускорений.

Согласно теореме об ускорениях точек плоской фигуры.

По формулам найдем ускорения звена АВ и точки А:

Вектор направлен от А к О. Вектор направлен перпендикулярно к нему и направлен в сторону UA(Вращение кривошипа - ускоренное).

Вектор направлен от В к А. Известны только линии действия этих векторов: - по вертикали, вдоль направляющих ползуна;  - перпендикулярно АВ. Зададимся произвольно их направлениями по указанным линиям. Эти ускорения определим из уравнений проекций векторного равенства на оси координат. Знак в ответе показывает, истинное ли направление вектора было выбрано.

Выбрав направление осей x и y получаем:

  1.  Проекция на ось OX:

  1.  Проекция на ось OY:

Теперь найдем угловое ускорение АВ:

Направление ускорения относительно полюса А определяет направление углового ускорения εАВ. Здесь под направлением углового ускорения подразумевается направление дуговой стрелки, которое при ускоренном вращении звена совпадает с направлением его вращения.

Определяем ускорение точки С:

Найдем проекции ускорения С:

Ответ:

Результаты вычислений для заданного положения механизма приведены в таблице:

υB,см/с

υC,см/с

ас, см/с2

ав, см/с2

εАВ, рад/с2

wAB, рад/с

140

103.393

362.424

1152.62

24.3

3.333


 

А также другие работы, которые могут Вас заинтересовать

46820. Статистика уровня жизни населения 32.18 KB
  Статистика уровня жизни населения. Доходы и расходы населения. Кроме этих основных показателей выделяют также некоторые информационные показатели: ВНП на душу населения национальный доход на душу населения объем потребления на душу населения и ряд других. Информационными источниками для построения системы показателей по уровню жизни населения являются данные из материалов различных разделов государственной статистики демографической статистики труда статистики цен социальной статистики материалы выборочных обследований бюджетов...
46821. Региональная экономическая политика 33.67 KB
  Участниками бюджетного процесса являются: Президент Российской Федерации; высшее должностное лицо субъекта РФ глава муниципального образования; законодательные представительные органы государственной власти и представительные органы местного самоуправления далее законодательные представительные органы; исполнительные органы государственной власти исполнительнораспорядительные органы муниципальных образований; Центральный банк Российской Федерации; органы государственного муниципального финансового контроля; органы управления...
46822. Социально- трудовые отношения (СТО) и социальное партнерство 32.59 KB
  Социально трудовые отношения СТО и социальное партнерство. Социальнотрудовые отношения характеризуют экономические психологические и правовые аспекты взаимосвязей индивидуумов и социальных групп в процессах обусловленных трудовой деятельностью. Анализ социальнотрудовых отношений обычно проводят по трем направлениям: субъекты; предметы; типы. Субъектами социальнотрудовых отношений являются индивиды или социальные группы.
46823. Понятие об информации, свойства информации 31.93 KB
  Как и всякий объект Понятие информации её виды и свойства. Виды информации: текстовая; числовая; графическая; звуковая; световая; электромагнитная информация электромагнитных волн. Свойства информации.
46824. Выразительные средства языка 32 KB
  Стилистический прием тропы– обобщенное типизированное воспроизведение нейтральных и выразительных фактов языка в различных литературных стилях речи оксюморон метафора метонимия ирония и др.срва языка не создают образов а повышают выразительность речи и усиливают ее эмоциональность при помощи особых синтаксических построений: инверсия контраст стилист. – повышение эмоциональности речи выделяются элементы.
46826. Мигранты как объект социальной работы. Формы и технологии социальной работы с ними 32 KB
  Настоящий Закон определяет статус вынужденных переселенцев устанавливает экономические социальные и правовые гарантии защиты их прав и законных интересов на территории Российской РФ в соответствии с Конституцией РФ общепризнанными принципами и нормами международного права и международными договорами РФ. По обстоятельствам вынужденным переселенцем признается: 1 гражданин Российской РФ вынужденный покинуть место жительства на территории иностранного государства и прибывший на территорию Российской РФ; 2 гражданин Российской Федерации...
46827. The composite sentence as polypredicative construction. The sphere of its usage. The classification of composite sentences. The two main types and the means of connection of clauses in a composite sentence 32 KB
  Being a polypredicative construction, it expresses a complicated act of thought, i.e. an act of mental activity which falls into two or more intellectual efforts closely combined with one another. In terms of situations and events this means that the composite sentence reflects two or more elementary situational events viewed as making up a unity; the constitutive connections of the events are expressed by the constitutive connections of the predicative lines of the sentence, i.e. by the sentential polypredication
46828. Изучение типов памяти 280 KB
  Ощущения, которые человек воспринимает об окружающем мире, передают определенный отпечаток, сохраняются, зафиксируются, а при необходимости и возможности - воссоздаются. Эти процессы именуются памятью. Она заложена в фундаменте умений человека, является условием обучающих действий, усвоение и знаний, выстраивание навыков и умений. Без памяти не может быть осуществлен человеческий процесс ни личности, ни общества