25843

Структура и свойства сталей и чугунов

Лекция

Производство и промышленные технологии

В углеродистых сталях углерод является основным элементом, определяющим структуру и свойства стали. С увеличением содержания углерода в стали возрастают твердость и предел прочности (НВ, ств), уменьшаются относительное удлинение, относительное сужение и ударная вязкость.

Русский

2014-10-16

74 KB

10 чел.

Лекция 10

Структура и свойства сталей и чугунов.

1.1. Влияние углерода и постоянных примесей на структуру и свойства сталей.

В углеродистых сталях углерод является основным элементом, определяющим структуру и свойства стали. С увеличением содержания углерода в стали возрастают твердость и предел прочности (НВ, ств), уменьшаются относительное удлинение, относительное сужение и ударная вязкость. При содержании в стали свыше 1 % углерода твердость ее возрастает, а предел прочности уменьшается. Происходит это потому, что образующаяся по границам зерен сетка вторичного цементита, который является хрупкой составляющей, уменьшает прочность стали. С увеличением содержания углерода снижаются технологические свойства стали (ухудшается свариваемость, затрудняется механическая обработка), возрастают электросопротивление и коэрцитивная сила, понижаются теплопроводность, остаточная индукция и магнитная проницаемость. Поэтому практическое применение имеют стали с содержанием углерода не более 1,5 %.

Марганец содержится в стали в качестве примеси в количестве от 0,4 до 0,8 %. Марганец, растворяясь в феррите, повышает прочность и значительно увеличивает прокаливаемость стали. Он устраняет вредное действие серы, образуя сульфид марганца (MnS), значительное количество которого удаляется вместе со шлаком при выплавке стали. Образующийся сульфид марганца с температурой плавления 1620 СС является пластичным и при горячей обработке не вызывает в стали трещин, т. е. марганец уменьшает красноломкость стали. Кроме того, марганец способствует уменьшению в стали сульфида железа (FeS). Данный химический элемент широко используется при производстве мебельной фурнитуры. Марганец делает фурнитуру устойчивой к загрязнению и окислению.

Кремний является полезной примесью и может присутствовать в стали до 0,5 %. Являясь эффективным раскислителем, кремний способствует получению плотных слитков стали с улучшенными свойствами. Кремний очень повышает прочность стали за счет образования с ферритом твердого раствора. Это снижает способность стали к вытяжке и холодной штамповке. В связи с этим в сталях, предназначенных для такой обработки, содержание кремния должно быть пониженным.

Фосфор для большинства сталей является вредной примесью, и содержание его не должно превышать 0,05 %. Фосфор увеличивает прочность и снижает пластичность и вязкость сталей. Он обладает повышенной склонностью к ликвации и, располагаясь вблизи границ зерен, вызывает хладноломкость стали. В ряде случаев фосфор может быть полезным; например, содержание фосфора 0,06-0,15 % улучшает обрабатываемость автоматных сталей режущим инструментом.

Сера является вредной примесью. Она образует сернистое железо FeS, которое взаимодействует с чистым железом, образуя легкоплавкую эвтектику с температурой плавления 988 °С. Эвтектика, располагаясь после затвердевания по границам зерен, при нагреве до 1000-1200 °С оплавляется и приводит к трещинам при деформации стали, т. е. вызывает ее красноломкость. Содержание серы в стали не должно превышать 0,06 %. Вредное влияние серы, как уже указывалось, ослабляет марганец, который практически исключает явление красноломкости. В автоматных сталях содержание серы допускается до 0,08-0,30 %, так как она облегчает обработку стали резанием.

Кислород, азот и водород являются вредными примесями. Кислород и азот находятся в стали в виде оксидов FeO, SiO2, MnO или нитридов Fe4N и др. Эти неметаллические включения нарушают сплошность стали и, являясь концентраторами напряжений, приводят к преждевременному выходу деталей из строя. Водород охрупчивает сталь и приводит к образованию флокенов, которые представляют собой тонкие трещины овальной или округлой формы. Флокены резко ухудшают свойства стали и делают ее непригодной для применения.

Классификация углеродистых сталей. Углеродистые стали классифицируют по назначению и качеству.

1.2. Структура и свойства чугунов, область применения.

К чугунам относятся сплавы железа с углеродом, содержание которого превышает 2,14%, В этих сплавах обычно присутствует также кремний и некоторые количества марганца, серы и фосфора, а иногда и другие элементы, вводимые как легирующие добавки для придания чугуну определенных свойств. К числу таких легирующих элементов можно отнести никель, хром, магний и др.

В зависимости от структуры чугуны подразделяют на белые и серые. В белых чугунах весь углерод связан в химическое соединение карбид железа Fe3C – цементит. В серых чугунах значительная часть углерода находится в структурно-свободном состоянии в виде графита. Если серые чугуны хорошо поддаются механической обработке, то белые обладают очень высокой твердостью и режущим инструментом обрабатываться не могут. Поэтому белые чугуны для изготовления изделий применяют крайне редко, их используют главным образом в виде полупродукта для получения так называемых ковких чугунов. Получение белого или серого чугуна зависит от его состава и скорости охлаждения.

В зависимости от структуры чугуны классифицируют на высокопрочные (с шаровидным графитом) и ковкие. По степени легирования чугуны подразделяют на простые, низколегированные (до 2,5% легирующих элементов), среднелегированные (2,5- 10% легирующих элементов) и высоколегированные (свыше 10% легирующих элементов). Шире всего используют простые и низколегированные серые литейные чугуны.

Чугун получил широкое распространение как конструкционный материал в машиностроительной, металлургической и других отраслях промышленности в связи с рядом преимуществ перед Другими материалами, среди которых в первую очередь следует упомянуть следующие: невысокая стоимость, хорошие литейные свойства. Изделия, изготовленные из него, имеют достаточно высокую прочность и износостойкость при работе на трение и характеризуются меньшей, чем сталь чувствительностью к концентраторам напряжений. Наряду с перечисленными преимуществами изделия из серого литейного чугуна хорошо обрабатываются режущим инструментом. Последнее вместе с хорошими литейными свойствами позволяет оценить чугун как весьма технологичный материал.

Главный процесс, формирующий структуру чугуна, - процесс графитизации (выделение углерода в структурно-свободном виде), так как от него зависит не только количество, форма и распределение графита в структуре, но и вид металлической основы (матрицы) чугуна. В зависимости от степени графитизации матрица может быть перлитно-цементитной (П-f-Ц), перлитной (П), перлитно-ферритной (П-Ч-Ф) и ферритной (Ф). Цементит перлита называют эвтектоидным, остальной цементит - структурно-свободным. Некоторые элементы, вводимые в чугун(в порядке силы действия: С, Si, Ni, Co, Cu ), способствуют графитизации, другие - препятствуют(S, V, Cr, Sn, Mo, Mn). Наибольшее графитизирующее действие оказывают углерод и кремнии, наименьшее - кобальт и медь.

Наиболее сильно задерживают процесс графитизации (оказывают отбеливающее действие) сера, ванадий, олово. Поэтому в серых литейных чугунах всегда содержится значительное количество кремния.

Серый чугун можно рассматривать как структуру, которая состоит из металлической основы с графитными включениями. Свойства чугуна зависят от свойств металлической основы и характера графитных включений.
Металлическая основа может быть: перлитной, когда 0,8 % С находится в виде цементита, а остальной углерод в виде графита; феррито-перлитной, когда количество углерода в виде цементита менее 0,8 % С; ферритной, когда углерод находится практически в виде графита.

В зависимости от формы графитных включений серые чугуны классифицируются на:

  •  чугун с пластинчатым графитом;
  •  чугун с хлопьевидным графитом (ковкий чугун);
  •  чугун с шаровидным графитом (высокопрочный чугун);
  •  чугун с вермикулярным графитом.

На рисунке дана обобщенная классификация чугунов по строению металлической основы и форме графитовых включений.

 

 

Ниже на рисунке представлены различные формы графита в чугуне:
а) пластинчатый графит; б) хлопьевидный графит; в) шаровидный графит; г) вермикулярный графит.

 

  Чугун с шаровидным графитом для отливок   

  При введении в чугун перед разливкой магния или церия графит кристаллизуется в шаровидной или близкой к нему форме. Этот процесс называется модифицированием. Шаровидный графит в меньшей степени, чем пластинчатый, ослабляет сечение металлической матрицы и, главное, не является таким сильным концентратором напряжений. Это обстоятельство в сочетании с возможностью формировать необходимую структуру металлической матрицы позволяет придавать чугунам высокую прочность, пластичность и повышенную ударную вязкость. Чугуны с шаровидным графитом, используемые в промышленности с 40-х годов, называют высокопрочными и, в соответствии с ГОСТ 7293–85, маркируются буквами ВЧ, за которыми следует число, указывающее значение временного сопротивления при растяжении в МПа • 10-1(например ВЧ 50).

Высокопрочные чугуны с шаровидным графитом используют для замены литой стали в изделиях ответственного назначения (валки горячей прокатки, станины и рамы прокатных станов, молотов и прессов). По сравнению со сталью они обладают несравненно более высокими литейными свойствами и на 8–10 % меньшей плотностью (последнее позволяет снизить массу машин). Даже поковки ответственного назначения из легированных сталей можно заменять на отливки из высокопрочного чугуна с шаровидным графитом. Классический пример этого — тяжелонагруженные коленчатые валы дизельных, в том числе автомобильных двигателей, к которым предъявляют высокие требования по статической и усталостной прочности.
Высокопрочный чугун используют и для замены серого чугуна с пластинчатым графитом, если необходимо увеличить срок службы изделия или снизить массу.  


 

А также другие работы, которые могут Вас заинтересовать

84563. Механізми лімфоутворення. Рух лімфи посудинах 43.75 KB
  Рух лімфи посудинах. Утворення лімфи відбувається за участі судин гемомікроциркулярного русла. Утворення лімфи. Головну роль в утворенні лімфи відіграють лімфатичні капіляри: на відміну від кровоносних вони сліпі більш широкі у них ширші міжклітинні щілини відсутня базальна мембрана проникність стінок лімфатичних капілярів дуже висока.
84564. Загальна характеристика системи дихання. Основні етапи дихання. Біомеханіка вдиху і видиху 49.56 KB
  Основні етапи дихання. Дихання – процес обміну газів О2 та СО2 між атмосферним повітрям та тканинами організму. СИСТЕМА ДИХАННЯ ВИКОНАВЧІ ОРГАНИ МЕХАНІЗМИ РЕГУЛЯЦІЇ Грудна клітина Нервові Гуморальні Дихальні м’язи Плевра Забезпечення оптимального газообміну між атмосферним повітрям та тканинами організму.
84565. Еластична тяга легень, негативний внутрішньоплевраль-ний тиск 43.41 KB
  Еластична тяга легень є сумою трьох сил: 1 сила поверхневого натягу шару рідини води яка вистеляє альвеоли зсередини. Це основна сила яка примушує альвеоли зменшувати свій розмір а легені спадатися; вона складає 2 3 від всієї еластичної тяги легень. Сурфактант вистелає альвеоли зсередини на кордоні з повітряним середовищем. Питома активність сурфактанту тобто його властивість зменшувати силу поверхневого натягу залежить від товщини його шару на поверхні альвеоли – чим більша його товщина тим більша питома активність.
84566. Зовнішнє дихання. Показники зовнішнього дихання та їх оцінка 46.93 KB
  Показники зовнішнього дихання та їх оцінка. ПОКАЗНИКИ ЗОВНІШНЬОГО ДИХАННЯ СТАТИЧНІ ДИНАМІЧНІ ОБ’ЄМИ ЧДР ХОД АВЛ КВЛ МВЛ КРД РД ЄМНОСТІ ДО РОвд РОвид ЗО ЖЄЛ Євд ФЗЄ ЗЄЛ Характеризують реалізацію резервів зовнішнього дихання в умовах спокійного та форсованого дихання Характеризують резерви можливості звнішнього дихання Основними методами дослідження показників зовнішнього дихання є спірометрія та спірографія. Спірографія – метод графічної реєстрації дихальних рухів в умовах спокійного та форсованого дихання.
84568. Дифузія газів у легенях. Дифузійна здатність легень і фактори, від яких вона залежить 56 KB
  Обмін газів О2 та СО2 між альвеолярним повітрям та кров’ю проходить тільки пасивно за механізмом дифузії. Дифузія газів в легенях підкоряється закону Фіка: об’єм дифузії газу V прямо пропорційний площі дифузії S коефіцієнту дифузії К градієнту тиску газу по обидві сторони альвеолокапілярної мембрани Р1 – Р2 і обернено пропорційний товщині цієї мембрани L: Площа дифузії в легенях S – це площа альвеол які вентилюються та кровопостачаються. Збільшення площі дифузії може зумовити збільшення глибини дихання і об’ємної швидкості...
84569. Транспорт кисню кров’ю. Киснева ємкість крові 36.49 KB
  Киснева ємкість крові. Розчинений у плазмі крові. в 1л крові розчиняється 3 мл кисню. Виходячи з цього розраховують кисневу ємкість крові – максимальну кількість О2 котру може зв’язати 1л крові.
84570. Крива дисоціації оксигемоглобіну, фактори, що впливають на її хід 49.75 KB
  Це означає що зниження тиску кисню в альвеолах до 60 мм.ст мало вплине на транспорт кисню кров’ю хоча напруження кисню в плазмі буде знижуватися пропорційно зниженню тиску О2 в альвеолах. супроводжується значним зниженням HbO2 в крові – він активно дисоціює з утворенням гемоглобіну та вільного кисню. І що активніше функціонує тканина тим нижчий в ній рівень О2 – посилена дисоціація HbO2 з вивільненням молекулярного кисню котрий утилізується тканинами.
84571. Транспорт вуглекислого газу кров’ю. Роль еритроцитів в транспорті вуглекислого газу 43.36 KB
  Вуглекислий газ транспортується наступними шляхами: Розчинений у плазмі крові – близько 25 мл л. У вигляді солей вугільної кислоти – букарбонати каліі та натрію плазми крові – 510 мл л. Але бікарбонатні йони утворюються в значній концентрації і тому за градієнтом концентрації в обмін на йони хлору надходять у плазму крові. Дифузія газів в тканинах підкоряється загальним законам об’єм дифузії прямопропорційний площі дифузії градієнту напруження газів в крові та тканинах.