25930

Способы гашения электрической дуги. Область применения

Доклад

Коммуникация, связь, радиоэлектроника и цифровые приборы

Способы гашения электрической дуги. Способы гашения дуги в коммутационных аппаратах до 1 кВ. Удлинение дуги при быстром расхождении контактов: чем длинее дуга тем большее напряжение необходимо для ее существования. Деление длинной дуги на ряд коротких дуг.

Русский

2013-08-17

47.5 KB

74 чел.

15. Способы гашения электрической дуги. Область применения.

Способы гашения дуги в коммутационных аппаратах до 1 кВ.

1. Удлинение дуги при быстром расхождении контактов: чем длинее дуга, тем большее  напряжение  необходимо  для  ее  существования.   Если   напряжение источника окажется меньше, то дуга гаснет.

2. Деление длинной дуги на ряд коротких дуг.

3. Гашение дуги в узких щелях. Если дуга горит в узкой щели, образованной дугостойким   материалом,   то   благодаря   соприкосновению   с   холодными поверхностями  происходит  интенсивное  охлаждение  и  диффузия   заряженных

частиц в окружающую среду. Это приводит  к  быстрой  деионизации  и  гашению дуги.

4.  Движение  дуги   в   магнитном   поле.   Электрическая   дуга   может рассматриваться как проводник с  током.  Если  дуга  находится  в  магнитном поле, то на нее действует сила, определяемая по  правилу  левой  руки.  Если создать магнитное  поле,  направленное  перпендикулярно  оси  дуги,  то  она получит   поступательное   движение   и   будет   затянута    внутрь    щели

дугогасительной камеры. В радиальном магнитном поле дуга получит вращательное движение. Магнитное поле может быть создано постоянными магнитами,  специальными  катушками  или самим контуром токоведущих частей. Быстрое  вращение  и  перемещение  дуги   способствует   ее   охлаждению  и деионизации.

Последние два способа гашения дуги (в узких щелях  и  в  магнитном  поле) применяются также в отключающих аппаратах напряжением выше 1 кВ.

Основные способы гашения дуги в аппаратах выше 1 кВ.

1. Гашение дуги в масле. Если контакты  отключающего  аппарата  поместить  в масло,  то  возникающая  при  размыкании  дуга   приводит   к   интенсивному газообразованию и испарению масла. Вокруг дуги  образуется  газовый  пузырь, состоящий  в  основном  из  водорода  (70—80%);  быстрое  разложение   масла приводит  к  повышению  давления  в  пузыре,  что способствует  ее  лучшему охлаждению   и   деионизации.   Водород   обладает   высокими   дугогасящими свойствами; соприкасаясь непосредственно со стволом  дуги,  он  способствует ее деионизации. Внутри газового пузыря происходит непрерывное движение  газа и паров масла. Гашение дуги в масле широко применяется в выключателях.

2.  Газовоздушное  дутье.   Охлаждение   дуги   улучшается,   если   создать направленное  движение  газов  —  дутье.  Дутье  вдоль  или   поперек   дуга способствует проникновению газовых частиц в ее ствол,  интенсивной  диффузии и охлаждению дуги.  Газ  создается  при  разложении  масла  дугой  (масляные выключатели) или твердых газогенерирующих  материалов   (автогазовое  дутье).

Более эффективно дутье холодным неионизированным  воздухом,  поступающим  из специальных баллонов со сжатым воздухом (воздушные выключатели).

3. Многократный разрыв цепи  тока.  Отключение  большого  тока  при  высоких напряжениях затруднительно. Это объясняется тем, что при  больших  значениях подводимой энергии и восстанавливающегося  напряжения  деионизация  дугового

промежутка  усложняется.  Поэтому   в   выключателях   высокого   напряжения применяют многократный разрыв дуги в каждой фазе.  Такие  выключатели  имеют несколько  гасительных  устройств,  рассчитанных   на   часть   номинального напряжения. Число разрывов  на  фазу  зависит  от  типа  выключателя  и  его напряжения. В выключателях 500—750 кВ может быть 12 разрывов и более.  Чтобы облегчить гашение дуги,  восстанавливающееся  напряжение  должно  равномерно распределяться между  разрывами.  Для  выравнивания  напряжения  параллельно главным  контактам  выключателя  Г   К   включают   емкости   или   активные сопротивления.

4. Гашение дуги в  вакууме.  Высокоразреженный  газ  обладает  электрической прочностью, в десятки раз большей, чем газ при  атмосферном  давлении.  Если контакты размыкаются в вакууме, то сразу же после первого  прохождения  тока в  дуге  через  нуль  прочность  промежутка  восстанавливается  и  дуга не загорается вновь.  Эти  свойства  вакуума  используются  в  некоторых  типах выключателей.

5. Гашение дуги в газах высокого давления.  Воздух  при  давлении  2  МПа  и более  также  обладает  высокой  электрической  прочностью.  Это   позволяет создавать достаточно компактные устройства  для  гашения  дуги  в  атмосфере сжатого  воздуха.  Еще  более  эффективно  применение  высокопрочных  газов, например шестифтористой  серы  SFg  (элегаза).  Элегаз  обладает  не  только большей электрической  прочностью,  чем  воздух  и  водород,  но  и  лучшими дугогасящими свойствами даже при атмосферном давлении. Элегаз применяется в выключателях, отделителях, короткозамыкателях и другой  аппаратуре  высокого

напряжения.

Гашение дуги в масляных выключателях.

В масляных выключателях контакты размыкаются в масле, однако вследствие высокой температуры дуги, образующейся между контактами, масло разлагается и дуговой разряд происходит в газовой среде. Приблизительно половину этого газа (по объему) составляют пары масла. Остальная часть состоит из водорода (70%) и углеводородов различного состава. Газы эти горючи, однако в масле горение невозможно из-за отсутствия кислорода. Количество масла, разлагаемого дугой, невелико, но объем образующихся газов велик. Один грамм масла дает приблизительно 1500 см3 газа, приведенного к комнатной температуре и атмосферному давлению. Гашение дуги в масляных выключателях происходит наиболее эффективно при применении гасительных камер, которые ограничивают зону дуги, способствуют повышению давления в этой зоне и образованию газового дутья сквозь дуговой столб.

Гашение дуги в элегазовых выключателях

Элегаз (SFg — шестифтористая сера) представляет собой инертный газ, плотность которого превышает плотность воздуха в 5 раз. Электрическая прочность элегаза в 2—3 раза выше прочности воздуха; при давлении 0,2 МПа электрическая прочность элегаза сравнима с прочностью масла. В элегазе при атмосферном давлении может быть погашена дуга с током, который в 100 раз превышает ток, отключаемый в воздухе при тех же условиях. Способность элегаза гасить дугу объясняется тем. что его молекулы улавливают электроны дугового столба и образуют относительно неподвижные отрицательные ионы. Потеря электронов делает дугу неустойчивой, и она легко гаснет. В струе элегаза поглощение электронов из дугового столба происходит

еще интенсивнее. В элегазовых выключателях применяют автопневматические дугогасительные устройства, в которых газ в процессе отключения сжимается поршневым устройством и направляется в зону дуги. Элегазовый выключатель представляет

собой замкнутую систему без выброса газа наружу.

Гашение дуги в вакуумных выключателях

Электрическая прочность вакуумного промежутка во много раз больше, чем воздушного промежутка при атмосферном давлении. Это свойство используется в вакуумных дугогасительных камерах. Рабочие контакты имеют вид полых усеченных конусов с радиальными прорезями. Такая форма контактов при размыкании создает радиальное электродинамическое усилие, действующее на возникающую дугу и заставляющее перемещаться ее через зазоры на дугогасительные контакты. Контакты представляют собой диски, разрезанные спиральными прорезями на три сектора, по которым движется дуга. Материал

контактов подобран так, чтобы уменьшить количество испаряющегося металла. Вследствие глубокого вакуума происходит быстрая диффузия заряженных частиц в окружающее пространство и при первом переходе тока через нуль дуга гаснет. Подвод тока к контактам осуществляется с помощью медных стержней. Подвижный контакт крепится к верхнему фланцу с помощью сильфона из нержавеющей стали. Сильфон служит для обеспечения герметичности вакуумной камеры. Металлические  экраны служат для выравнивания     электрического поля и для защиты керамического корпуса от попадания паров металла,

образующихся при гашении дуги.

СПОСОБЫ ГАШЕНИЯ ДУГИ

Для дуг постоянного и переменного токов существуют следующие способы гашения дуги:

  1.  МЕХАНИЧЕСКОЕ РАСТЯГИВАНИЕ (только для “—” тока). Простейший способ гашения, но малоэффективен. Применим только в слаботочной аппаратуре.
  2.   ДЕЛЕНИЕ ДУГИ НА РЯД КОРОТКИХ ДУГ (применяется как на постоянном, так и на переменном токе). Это гашение дуги с помощью дугогасительной решетки. Способ этот предложен еще в начале века русским ученым М. О. Доливо-Добровольским и до сих пор широко применяется. При расхождении контактов возникшая между ними дуга под воздействием магнитного поля движется на пластины и разбивается на ряд коротких дуг.

Т.к. на переменном токе деионная решетка работает эффективнее, чем на постоянном, а аппараты могут использоваться как на “~” так и на “—” токе (например, автоматы) число пластин рассчитывают из условия гашения дуги “—” тока.

  1.  ГАШЕНИЕ ДУГИ ВЫСОКИМ ДАВЛЕНИЕМ (применяется как на постоянном, так и на переменном токе). С ростом давления возрастает плотность газа, при этом увеличивается теплопроводность и отвод тепла от дуги. На этом принципе основано гашение дуги в предохранителях и других аппаратах низкого напряжения. (В некоторых аппаратах стенки дугогасящей камеры делаются из газогенерирующих материалов – например, фибры. Благодаря высокой температуре дуги такие стенки выделяют газ и давление в объеме поднимается до 10-15 МПа.).
  2.  ГАШЕНИЕ ДУГИ В ПОТОКЕ СЖАТОГО ВОЗДУХА. В электрических аппаратах высокого напряжения коммутируются токи в десятки килоампер при напряжении 106 В. Для решения такой сложной задачи используется воздействие на электрическую дугу потока сжатого воздуха или других газов. Сжатый воздух обладает высокой плотностью и теплопроводностью. Омывая дугу с большой скоростью, он охлаждает ее и при прохождении тока через нуль обеспечивает деионизацию дугового столба. Воздух при высоком давлении обладает также высокой электрической прочностью, что создает высокую скорость нарастания электрической прочности промежутка.
  3.  ГАШЕНИЕ ДУГИ В ТРАНСФОРМАТОРНОМ МАСЛЕ. Этот способ гашения дуги нашел широкое применение в выключателях переменного тока на высокое напряжение. Контакты выключателя погружаются в масло. Возникающая при разрыве дуга (5000-60000 С) приводит к очень интенсивному испарению окружающего масла с диссоциацией его паров. Вокруг дуги образуется газовая оболочка – газовый пузырь, состоящий в основном из водорода (70-80% газов пузыря) и паров масла. Водород, обладающий наивысшими среди газов дугогасящими свойствами (обладает исключительно высокой теплопроводностью), наиболее тесно соприкасается со стволом дуги. Выделяемые с громадной скоростью газы проникают непосредственно в зону ствола дуги, вызывают перемешивание холодного и горячего газа в пузыре, создают интенсивное охлаждение и деионизацию промежутка. Быстрое разложение масла приводит к повышению давления внутри пузыря, что также способствует гашению дуги.
  4.  ГАШЕНИЕ ДУГИ В ВАКУУМНОЙ СРЕДЕ (применяется как на постоянном, так и на переменном токе). В вакуумном ДУ (дугогасительном устройстве) контакты расходятся в среде с давлением 10-4 Па (10-6 мм рт.ст.), при котором плотность воздуха мала. Длина свободного пробега молекул достигает 50 и электронов – 300 м. В вакууме очень высокая скорость диффузии из-за большой разницы плотностей частиц в дуге и окружающем ее вакууме. Практически через 10 мкс после нуля тока между контактами восстанавливается электрическая прочность вакуума. Быстрая диффузия частиц, высокие электрическая прочность вакуума и скорость ее восстановления обеспечивают гашение дуги при первом прохождении тока через нуль. Вакуумные ДУ являются в настоящее время наиболее эффективными и долговечными. Их срок службы достигает 25 лет.
  5.  ГАШЕНИЕ ДУГИ ПОД ВОЗДЕЙСТВИЕМ МАГНИТНОГО ПОЛЯ (применяется как на постоянном, так и на переменном токе). Электрическая дуга является своеобразным проводником с током, который может взаимодействовать с магнитным полем. Сила взаимодействия между током дуги и магнитным полем перемещает дугу, создается так называемое магнитное дутье. В ДУ с магнитным дутьем может быть применено либо последовательное либо параллельное подключение катушки.


 

А также другие работы, которые могут Вас заинтересовать

17244. Конфликты между транзакциями 77 KB
  Лекция №8 Конфликты между транзакциями Устно. Анализ проблем параллелизма показывает что если не предпринимать специальных мер то при работе в смеси нарушается свойство И изолированность транзакций. Транзакции реально мешают друг другу получать правильные резул
17245. Решение проблем параллелизма при помощи блокировок 164.5 KB
  Лекция №9 Решение проблем параллелизма при помощи блокировок Проанализируем поведение транзакций вступающих в конфликт при доступе к одним и тем же данным. Проблема потери результатов обновления Две транзакции по очереди записывают некоторые данные в одну и ту ж...
17246. Преднамеренные блокировки 122.5 KB
  Лекция №10 Преднамеренные блокировки Управление блокировками осуществляется из программного обеспечения и осуществляется на уровне пользовательского соединения. Блокировка указывает что пользователь имеет право на использование соответствующего ресурса. К ресур...
17247. Транзакции и восстановление данных 66 KB
  Лекция №11 Транзакции и восстановление данных В данной главе изучаются возможности восстановления данных после сбоев системы т.е. свойство Д – долговечность транзакций. Главное требование долговечности данных транзакций состоит в том что данные зафиксированных
17248. Основы технологии OLAP 132.5 KB
  Лекция №12 Основы технологии OLAP Что такое хранилище данных Что такое OLAP Многомерные кубы Некоторые термины и понятия Заключение OLAP OnLine Analytical Processing технологии многомерного анализа данных. Что такое хранилище данных Устно. Информационные с...
17249. Облік доходів підприємства 31.5 KB
  Облік доходів підприємства. Дохід є надходженням економічних вигод які виникають в результаті діяльності підприємства у вигляді виручки від реалізації продукції товарів робіт послуг гонорарів відсотків дивідендів тощо. В обліку дохід відображається в момент надх
17250. Облік фінансових результатів та використання прибутку 35.5 KB
  Облік фінансових результатів та використання прибутку. Фінансові результати за видами діяльності внаслідок яких вони виникають поділяються на : прибутки збитки від звичайної діяльності операційна основна та інша діяльність інша звичайна інвестиційна та фінансо...
17251. Облік власного капіталу 35 KB
  Облік власного капіталу. Власний капітал підприємства – це частина в активах підприємства яка залишається після вирахування усіх його зобов'язань. Власний капітал складається із статутного пайового додаткового резервного нерозподілених прибутків непокритих збитк...
17252. Облік резервного капіталу 26.5 KB
  Облік резервного капіталу. Резервний капітал – це сума резервів створених відповідно до чинного законодавства і засновницьких документів за рахунок нерозподіленого прибутку підприємства. Він створюється з метою усунення можливих в майбутньому тимчасових фінансових ...