25935

Разрядники: назначение, конструкция, принцип действия. Вентильные и трубчатые разрядники. Нелинейные ограничители перенапряжения (ОПН): назначение, конструкция, принцип действия. Условия выбора

Доклад

Коммуникация, связь, радиоэлектроника и цифровые приборы

Нелинейные ограничители перенапряжения ОПН: назначение конструкция принцип действия. В результате пробоя в трубке возникает интенсивная газогенерация и через выхлопное отверстие образуется продольное дутье достаточное для погашения дуги . ОПН Ограничитель перенапряжения нелинейный ОПН это разрядник без искровых промежутков. Активная часть ОПН состоит из последовательного набора варисторов.

Русский

2013-08-17

52.5 KB

279 чел.

28. Разрядники: назначение, конструкция, принцип действия. Вентильные и трубчатые разрядники. Нелинейные ограничители перенапряжения (ОПН): назначение, конструкция, принцип действия. Условия выбора.

Разря́дник — электрический аппарат, предназначенный для ограничения перенапряжений в электротехнических установках и электрических сетях.

В электрических сетях часто возникают импульсные всплески напряжения, вызванные коммутациями электроаппаратов, атмосферными разрядами или иными причинами. Несмотря на кратковременность такого перенапряжения, его может быть достаточно для пробоя изоляции и, как следствие, короткого замыкания, приводящего к разрушительным последствиям.[1] Для того, чтобы устранить вероятность короткого замыкания, можно применять более надежную изоляцию, но это приводит к значительному увеличению стоимости оборудования. В связи с этим в электрических сетях целесообразно применять разрядники.

Разрядник состоит из двух электродов и дугогасительного устройства.

Электроды

Один из электродов крепится на защищаемой цепи, второй электрод заземляется. Пространство между электродами называется искровым промежутком. При определенном значении напряжения между двумя электродами искровой промежуток пробивается, снимая тем самым перенапряжение с защищаемого участка цепи. Одно из основных требований, предъявляемых к разряднику — гарантированная электрическая прочность при промышленной частоте (разрядник не должен пробиваться в нормальном режиме работы сети).

Дугогасительное устройство

После пробоя импульсом искровой промежуток достаточно ионизирован, чтобы пробиться фазным напряжением нормального режима, в связи с чем возникает короткое замыкание и, как следствие, срабатывание устройств РЗиА, защищающих данный участок. Задача дугогасительного устройства — устранить это замыкание в наиболее короткие сроки до срабатывания устройств защиты.

Виды разрядников

Трубчатый разрядник

Трубчатый разрядник представляет собой дугогасительную трубку из полихлорвинила, с разных концов которой закреплены электроды. Один электрод заземляется, а второй располагается на небольшом расстоянии от защищаемого участка (расстояние регулируется в зависимости от напряжения защищаемого участка). При возникновении перенапряжения пробиваются оба промежутка: между разрядником и защищаемым участком и между двумя электродами. В результате пробоя в трубке возникает интенсивная газогенерация, и через выхлопное отверстие образуется продольное дутье, достаточное для погашения дуги .

Вентильный разрядник

Вентильный разрядник состоит из двух основных компонентов: многократного искрового промежутка (состоящего из нескольких однократных) и рабочего резистора (состоящего из последовательного набора вилитовых дисков). Многократный искровой промежуток последовательно соединен с рабочим резистором. В связи с тем, что вилит меняет характеристики при увлажнении, рабочий резистор герметично закрывается от внешней среды. Во время перенапряжения многократный искровой промежуток пробивается, задача рабочего резистора — снизить значение сопровождающего тока до величины, которая сможет быть успешно погашена искровыми промежутками. Вилит обладает особенным свойством — его сопротивление нелинейно — оно падает с увеличением значения силы тока. Это свойство позволяет пропустить больший ток при меньшем падении напряжения. Благодаря этому свойству вентильные разрядники и получили свое название. Среди прочих преимуществ вентильных разрядников следует отметить бесшумность срабатывания и отсутствие выбросов газа или пламени.

Магнитовентильный разрядник (РВМГ)

РВМГ состоит из нескольких последовательных блоков с магнитным искровым промежутком и соответствующего числа вилитовых дисков. Каждый блок магнитных искровых промежутков представляет собой поочередное соединение единичных искровых промежутков и постоянных магнитов, заключенное в фарфоровый цилиндр.

При пробое в единичных искровых промежутках возникает дуга, которая за счет действия магнитного поля, создаваемого кольцевым магнитом, начинает вращаться с большой скоростью, что обеспечивает более быстрое, по сравнению с вентильными разрядниками, дугогашение.

ОПН

Ограничитель перенапряжения нелинейный (ОПН) — это разрядник без искровых промежутков. Активная часть ОПН состоит из последовательного набора варисторов. Принцип действия ОПН основан на том, что проводимость варисторов нелинейно зависит от приложенного напряжения. В нормальном режиме ОПН не пропускает ток, но как только на участке сети возникает перенапряжение, сопротивление ОПН резко снижается, чем и обуславливается эффект защиты от перенапряжения. После прохождения разряда через ОПН, его сопротивление опять возрастает. Переход из «закрытого» в «открытое» состояния занимает меньше 1 наносекунды (в отличие от разрядников с искровыми промежутками, у которых это время равняется нескольким микросекундам). Кроме быстроты срабатывания ОПН обладает еще рядом преимуществ. Одним из них является стабильность характеристики варисторов после неоднократного срабатывания вплоть до окончания указанного времени эксплуатации, что, кроме прочего, устраняет необходимость в эксплуатационном обслуживании.

Обозначение

На электрических принципиальных схемах в России разрядники обозначаются согласно ГОСТ 2.727—68.
1. Общее обозначение разрядника
2. Разрядник трубчатый
3. Разрядник вентильный и магнитовентильный
4. ОПН


 

А также другие работы, которые могут Вас заинтересовать

81583. Предмет и задачи биологической химии. Обмен веществ и энергии, иерархическая структурная организация и самовоспроизведение как важнейшие признаки живой материи 106.91 KB
  Обмен веществ и энергии иерархическая структурная организация и самовоспроизведение как важнейшие признаки живой материи. Она изучает химическую природу веществ входящих в состав живых организмов их превращения а также связь этих превращений с деятельностью клеток органов и тканей и организма в целом. Из этого определения вытекает что биохимия занимается выяснением химических основ важнейших биологических процессов и общих путей и принципов превращений веществ и энергии лежащих в основе разнообразных проявлений жизни. Важнейшим...
81584. Гетеротрофные и аутотрофные организмы: различия по питанию и источникам энергии. Катаболизм и анаболизм 106.04 KB
  Живые клетки постоянно нуждаются в органических и неорганических веществах а также в химической энергии которую они получают преимущественно из АТФ АТР. Гетеротрофы например животные и грибы зависят от получения органических веществ с пищей. Так как большая часть этих питательных веществ белки углеводы нуклеиновые кислоты и липиды не могут утилизироваться непосредственно они сначала разрушаются до более мелких фрагментов катаболическим путем. Процесс обмена веществ определяется двумя сопряженными процессами: анаболизма и...
81585. Многомолекулярные системы (метаболические цепи, мембранные процессы, системы синтеза биополимеров, молекулярные регуляторные системы) как основные объекты биохимического исследования 103.39 KB
  Метаболическая цепь состоящая из реакций протекающих внутри одной системы называется внутренней. Следствием такого пересечения является возникновение метаболической сети биологической системы. Молекулярные регуляторные системы системы направленные на поддержание гомеостаза.
81586. Уровни структурной организации живого. Биохимия как молекулярный уровень изучения явлений жизни. Биохимия и медицина (медицинская биохимия) 105.42 KB
  Биохимия как молекулярный уровень изучения явлений жизни. Жизнь имеет следующие уровни организации: Молекулярный уровень отражает особенности химизма живого вещества а также механизмы и процессы передачи генной информации Клеточный и субклеточный уровни отражают особенности специализации клеток а также внутриклеточные структуры. Организменный и органнотканевый уровни отражают признаки отдельных особей их строение физиологию поведение а также строение и функции органов и тканей живых существ Популяционновидовой уровень ...
81587. Основные разделы и направления в биохимии: биоорганическая химия, динамическая и функциональная биохимия, молекулярная биология 103.21 KB
  Биохимия включает в себя: Биоорганическая химия изучает вещества лежащие в основе процессов жизнедеятельности в непосредственной связи с познанием их биологической функции. Основные объекты БОХ биополимеры превращения которых составляют химическую сущность биологических процессов и биорегуляторы которые химически регулируют обмен веществ. БОХ занимается получением этих веществ в химически чистом состоянии установлением строения синтезом выяснением зависимостей между строением и биологическими свойствами изучением химических...
81588. История изучения белков. Представление о белках как важнейшем классе органических веществ и структурно-функциональном компоненте организма человека 111.39 KB
  Белки были выделены в отдельный класс биологических молекул в XVIII веке в результате работ французского химика Антуана Фуркруа и других учёных в которых было отмечено свойство белков коагулировать денатурировать под воздействием нагревания или кислот. Голландский химик Геррит Мульдер провёл анализ состава белков и выдвинул гипотезу что практически все белки имеют сходную эмпирическую формулу. Мульдер также определил продукты разрушения белков аминокислоты и для одной из них лейцина с малой долей погрешности определил молекулярную...
81589. Аминокислоты, входящие в состав белков, их строение и свойства. Пептидная связь. Первичная структура белков 123.13 KB
  αАминокислоты представляют собой производные карбоновых кислот у которых один водородный атом у αуглерода замещен на аминогруппу NH2. Аминокислоты будут отличаться друг от друга химической природой радикала R представляющего группу атомов в молекуле аминокислоты связанную с αуглеродным атомом и не участвующую в образовании пептидной связи при синтезе белка. Почти все αамино и αкарбоксильные группы участвуют в образовании пептидных связей белковой молекулы теряя при этом свои специфические для свободных аминокислот...
81590. Зависимость биологических свойств белков от первичной структуры. Видовая специфичность первичной структуры белков (инсулины разных животных) 103.07 KB
  Видовая специфичность первичной структуры белков инсулины разных животных. Стабильность первичной структуры обеспечивается в основном главновалентными пептидными связями; возможно участие небольшого числа дисульфидных связей. В некоторых ферментах обладающих близкими каталитическими свойствами встречаются идентичные пептидные структуры содержащие неизменные инвариантные участки и вариабельные последовательности аминокислот особенно в областях их активных центров.