25959

Стены из крупных легкобетонных блоков

Доклад

Архитектура, проектирование и строительство

В наружных стенах из крупных легкобетонных блоков показанных на чертежах типоразмеры основных элементов кладки назначены исходя из двухрядной разрезки в пределах этажа высотой 28 м. Блоки подразделяются на наружные простеночные рядовые и угловые поясные и перемычные подоконные. Внутренние стены возводятся из крупных бетонных блоков однорядной разрезки. Блоки подразделяются на внутренние стеновые перемычные вентиляционные специальные.

Русский

2013-08-17

27.5 KB

21 чел.

2.Стены из крупных легкобетонных блоков

В отличие от панелей, устойчивость которых в здании обусловливается образованием ячеистых конструктивных систем, крупный блок как элемент кладки обладает самостоятельной   устойчивостью. В наружных стенах из крупных легкобетонных блоков, показанных на чертежах, типоразмеры основных элементов кладки назначены исходя из двухрядной разрезки в пределах этажа высотой 2,8 м. Блоки подразделяются на наружные простеночные (рядовые и угловые), поясные и перемычные, подоконные.

Внутренние стены возводятся из крупных бетонных блоков однорядной разрезки. Блоки подразделяются на внутренние стеновые, перемычные, вентиляционные, специальные. Крупноблочная кладка наружных стен ведется с перевязкой швов между простеночными и поясными (в том числе перемычечными) блоками. В кладке внутренних стен перевязка швов образуется в платформенном стыке с плитами перекрытия. Блоки наружных стен формуются из легких бетонов плотностью до 1600 кг/м3 с наружным фактурным слоем из цветного декоративного бетона на белом цементе, блоки внутренних стен — из конструктивного бетона. Толщина блоков наружных стен 400, 500, 600 мм в зависимости от плотности бетона и климатических условий района строительства. Толщина блоков внутренних стен 200, 300 мм в зависимости от этажности здания. Ширина простеночных блоков увязывается с конструктивным шагом здания и размерами проемов. Монолитность кладки обеспечивается заполнением вертикальных и горизонтальных швов раствором, а пазух — бетоном. Связь между продольными и поперечными стенами осуществляется: в углах наружных стен — перевязкой кладки специальными угловыми блоками; в местах примыкания наружных стен к внутренним несущим стенам — путем закладки Т-образных анкеров из полосовой стали в горизонтальные швы.

Совместная работа наружных и внутренних стен обеспечивается устройством монолитных шпонок, заполненных пластичным цементно-песчаным раствором. Соединение блоков наружных стен между собой и с плитами перекрытий фиксируется анкерами из круглой стали. Блоки внутренних стен соединяются в ряду стальными накладками из уголков и полосовой стали. Утолщенный шов над цокольными блоками армируется стальными сетками. Балконная плита закрепляется сваркой со стальными анкерами, защемляемыми плитами перекрытия.

Все стальные элементы, входящие в состав сварных соединений, расположенных в зоне перепада температур, должны иметь антикоррозионное цинковое покрытие.

Стыки герметизируются и утепляются путем конопатки смоленой паклей, проклейки рубероидом на битуме, установки пакетов из минерального войлока на битумной связке и замоноличивания легким бетоном. Снаружи швы зачеканиваются цементным раствором. Оконные и дверные коробки крепятся к деревянным антисептированным пробкам, заложенным в простеночные блоки. Коробки обертываются полоской толя. Зазоры тщательно проконопачиваются и Снаружи герметизируются мастикой.

Кладка вентиляционных блоков с вертикальными круглыми пустотами производится на цементном растворе марки 100 и более с точным совмещением каналов. В этих целях вентиляционные блоки монтируются с отставанием на один этаж, как не связанные с несущей конструкцией здания. Точность швов выверяется маячными подкладками.


 

А также другие работы, которые могут Вас заинтересовать

22340. Преобразователи частоты (ПЧ) 264 KB
  Преобразователи частоты ПЧ Преобразователи частоты предназначены для переноса спектра радиосигнала из одной области радиочастотного диапазона в другую. Рисунок Перенос спектра сигнала преобразователем частоты Обобщенная структурная схема ПЧ приведена на рисунке 2. ПЧ состоит из нелинейного элемента НЭ смесителя фильтра промежуточной частоты ФПЧ и гетеродина Г. Рисунок 2 Структурная схема преобразователя частоты Смеситель можно представить шестиполюсником на который подаются напряжения преобразуемого сигнала uC и гетеродина...
22341. Детекторы радиосигналов 676.5 KB
  Амплитудные детекторы Амплитудный детектор устройство на выходе которого создается напряжение в соответствии с законом модуляции амплитуды входного гармонического сигнала. Если на входе АД действует напряжение ивх модулированное по амплитуде колебанием с частотой F то график изменения этого напряжения во времени и его спектр имеют вид показанный на рисунке 2а. Напряжение на выходе детектора ЕД рисунок 2б должно меняться в соответствии с законом изменения огибающей Uвх входного напряжения ивх. Таким образом напряжение на выходе АД...
22342. Прием цифровых сигналов при наличии шумов 191 KB
  Модуляция несущей происходит в передатчике и параметры модулированного сигнала полностью определяются выбранным методом модуляции и возможностями элементной базы. Ситуация усложняется еще тем что все параметры среды распространения сигнала определяются только статистически и в значительной степени приближенно. Функциональные схемы приемника цифровых сигналов Для высокочастотного сигнала типовой приемник имеет функциональную схему супергетеродина т.
22343. Синхронизация гетеродина приемника с несущей частотой 112.5 KB
  Вовторых применение оптимального фильтра максимизирующего отношение сигнал шум принятого сигнала также требует снятие отсчетов в строго определенные моменты времени. Эта необходимость возникает в том случае когда в приемнике используется когерентное детектирование ВЧ сигнала. Следовательно несущая и тактовая частоты должны быть восстановлены непосредственно в приемнике из принятого сигнала или получены от того же самого передатчика в виде опорного пилотсигнала. Параметры принятого сигнала Передаваемый и принимаемый сигналы...
22344. КРАТКАЯ ИСТОРИЯ ВОЗНИКНОВЕНИЯ РАДИО. ОСНОВНЫЕ ПРЕОБРАЗОВАНИЯ СИГНАЛА В РАДИОПРИЕМНОМ ТРАКТЕ 71.5 KB
  ОСНОВНЫЕ ПРЕОБРАЗОВАНИЯ СИГНАЛА В РАДИОПРИЕМНОМ ТРАКТЕ Краткая история возникновения радио Свою историю радио начинает с экспериментов Герца по проверке уравнений Максвелла. Поэтому в радиоприемном тракте необходимо решать задачи: выделения полезного сигнала из смеси его с помехами; выделения модулирующей функции; выделения передаваемой информации из модулирующей функции и ее преобразование к удобному для дальнейшего использования виду. Решение перечисленных задач в радиоприемном тракте осуществляется с помощью следующих функций:...
22345. Основные архитектуры РПТ. Шумовые характеристики, динамический диапазон 431.5 KB
  Как и в квадратурном смесителе здесь используется пара идентичных смесителей на которые помимо РЧ сигнала подается сигнал с гетеродина в квадратуре. Сигналы в I и Q каналах содержат полную информацию об огибающей входного сигнала и могут быть обработаны в соответствующим образом построенном демодуляторе. В приемнике прямого преобразования наличие рассогласования в цепях смесителя и ФНЧ не ведет к ухудшению селективности а лишь к некоторому искажению полезного сигнала что зачастую не имеет никакого значения при приеме цифровых данных....
22346. Входные каскады РПТ. Высокочастотные фильтры, УРЧ 247.5 KB
  С точки зрения минимизации вносимых приемником шумов следовало бы в качестве первого каскада использовать малошумящий усилитель МШУ имеющий максимальный коэффициент усиления и минимальный коэффициент шума. Современные МШУ имеют коэффициент шума до 0. В диапазоне частот 450 мГц МШУ имеет коэффициент шума 2. Суммарный коэффициент шума в последовательном включении МШУ –фильтр рассчитывается по 1.
22347. Непрерывность функций комплексной переменной 468 KB
  Если то функция называется непрерывной в точке . Иными словами: непрерывна в точке если для любого сколь угодно малого существует положительное число такое что 2 для всех удовлетворяющих неравенству 3 короче . Геометрически это означает что для всех точек лежащих внутри круга с центром в точке достаточно малого радиуса соответствующие значения функции изображаются точками лежащими внутри круга с центром в точке сколь...
22348. Интегрирование функций комплексной переменной 1.52 MB
  кривая с выбранным направлением движения вдоль нее и на ней – функция комплексной переменной fz. Если C кусочногладкая а значит спрямляемая кривая а fz – кусочнонепрерывная и ограниченная функция то интеграл 1 всегда существует. Если функция fz аналитична в односвязной области D то для всех кривых C лежащих в этой области и имеющих общие концы интеграл имеет одно и то же значение. fz – аналитическая функция.