26020

Классификация СМО

Доклад

Информатика, кибернетика и программирование

Эти ограничения могут касаться длины очереди числа заявок одновременно находящихся в очереди времени пребывания заявки в очереди после какогото срока пребывания в очереди заявка покидает очередь и уходит общего времени пребывания заявки в СМО и т. Например для СМО с отказами одной из важнейших характеристик ее продуктивности является так называемая абсолютная пропускная способность среднее число заявок которое может обслужить система за единицу времени. Наряду с абсолютной часто рассматривается относительная пропускная способность...

Русский

2013-08-17

34.33 KB

16 чел.

1. Классификация СМО.

Системы массового обслуживания вообще могут быть двух типов.

  1.  Системы с отказами. В таких системах заявка поступившая в момент, когда все каналы заняты, получает «отказ», покидает СМО и в дальнейшем процессе обслуживания не участвуют.
  2.  Системы с ожиданием (с очередью). В таких системах заявка, поступившая в момент, когда все каналы заняты, становиться в очередь и ожидает, пока не освободиться один из каналов. Как только освободиться канал, принимается к обслуживанию одна из заявок, стоящих в очереди.

Обслуживание в системе с ожиданием может быть «упорядоченным» (заявки обслуживаются в порядке поступления) и «неупорядоченным» (заявки обслуживаются в случайном порядке). Кроме того, в некоторых СМО применяется так называемое «обслуживание с приоритетом», когда некоторые заявки обслуживаются в первую очередь, предпочтительно перед другими.

Системы с очередью делятся на системы с неограниченным ожиданием и системы с ограниченным ожиданием.

В системах с неограниченным ожиданием каждая заявка, поступившая в момент, когда нет свободных каналов, становиться в очередь и «терпеливо» ждет освобождения канала, который примет ее к обслуживанию. Любая заявка, поступившая в СМО, рано или поздно будет обслужена.

В системах с ограниченным ожиданием на пребывание заявки в очереди накладываются те или другие ограничения. Эти ограничения могут касаться длины очереди (числа заявок, одновременно находящихся в очереди), времени пребывания заявки в очереди (после какого-то срока пребывания в очереди заявка покидает очередь и уходит), общего времени пребывания заявки в СМО и т.д.

В зависимости от типа СМО, при оценке ее эффективности могут применяться те или другие величины (показатели эффективности). Например, для СМО с отказами одной из важнейших характеристик ее продуктивности является так называемая абсолютная пропускная способность - среднее число заявок, которое может обслужить система за единицу времени.

Наряду с абсолютной, часто рассматривается относительная пропускная способность СМО - средняя доля поступивших заявок, обслуживаемая системой (отношение среднего числа заявок, обслуживаемых системой в единицу времени, к среднему числу поступающих за это время заявок)

Помимо абсолютной и относительной пропускной способностей, при анализе СМО с отказами нас могут, в зависимости от задачи исследования, интересовать и другие характеристики, например:

  1.  среднее число занятых каналов,
  2.  среднее относительное время простоя системы в целом и отдельного канала и т.д.


2. Математическая модель процесса «гибели и размножения». Граф, система уравнений.

Перейдем к формальному описанию процесса размножения и гибели в непрерывном времени. Будем полагать, что в каждый момент времени может произойти рождение или гибель только одного объекта. Число объектов в системе может быть конечным или бесконечным. Математическая модель не зависит от природы объектов и их физических свойств.

Процесс (или схема) размножения и гибели описывается графом состояний, приведенным на рис. 1.

Число состояний равно m + 1. Из каждого состояния wk, k = 1, 2, …, m− 1, возможны переходы только в соседние состояния wk-1 и wk+1. Переход wk → wk+1 (k = 0, 1, 2, …, m−1) означает рождение некоторого объекта, а переход wk → wk-1 (k = 1, 2, …, m) – его гибель. Таким образом, индекс k в обозначении wk  показывает число объектов, находящихся в системе.

Рис. 1. Граф состояний схемы размножения и гибели

С помощью математических моделей такого процесса находят характеристики, которые позволяют производить его анализ, сравнивать между собой различные процессы, выбирать и конструировать лучшие варианты и даже управлять такими процессами. Мы рассмотрим модель на основе теории марковских процессов.

Марковский процесс относится к случайным процессам с дискретными состояниями и непрерывным временем, то есть нахождение в состояниях и переходы между ними происходят в непрерывном времени. Переход из состояния wi в состояние wj  за достаточно малый промежуток времени ∆t описывается вероятностью:

где λij – параметр, называемый интенсивностью перехода wi→wj в непрерывном времени, o(∆t) – бесконечно малая величина более высокого порядка малости по сравнению с ∆t при ∆t→0. Если интенсивности не зависят от времени, то процесс будет однородным, а вероятности pij(∆t) будут зависеть только от wi, wj и длины ∆t и не будут зависеть от положения промежутка ∆t на оси времени. Для однородного марковского процесса время нахождения в каждом состоянии распределено по показательному закону.

Будем полагать, что время нахождения в каждом состоянии распределено по показательному закону, а переходы между состояниями описываются постоянными во времени интенсивностями. В этом случае для составления математической модели процесса размножения и гибели может быть применена теория однородных марковских процессов. Мы ограничимся рассмотрением только стационарного (установившегося) режима, который описывается предельными вероятностями и некоторыми обобщенными характеристиками на основе этих вероятностей. Формулы для предельных вероятностей процесса размножения и гибели на базе однородных марковских процессов известны:

где ρj – параметр, равный отношению интенсивности перехода wj→wj+1 к интенсивности перехода wj+1→wj.

Можно сформулировать правило вычисления предельной вероятности состояния wk (k = 1, 2, …, m): вероятность состояния ≠k равна произведению параметров ρj для всех переходов левее состояния wk, умноженному на вероятность крайнего левого состояния ≠0. Следует отметить, что при ∞k=0 имеет место процесс чистого размножения.

Одно из наиболее разработанных приложений схемы размножения и гибели – это ее использование для моделирования систем массового обслуживания.


 

А также другие работы, которые могут Вас заинтересовать

46956. Особенности экономического развития Англии конца XIX – начала XX в 39 KB
  Главными особенностями экономического развития Англии конца XIX начала XX в. стали: утрата промышленного первенства и господства на мировом рынке; рост капиталистических монополий особенно колониальных и военнопромышленных; создание мощных банков и финансовой олигархии; возрастание роли экспорта капитала в том числе в пределы Британской империи колонии и в зависимые страны; превращение колониальной монополии в решающий фактор экономического и политического положения Англии во всемирном хозяйстве. Под действием закона...
46959. Современная модель государственного управления в России 41 KB
  В настоящий момент система гос управления переживает период трансформации, поиска эффективной модели администрирования, способной удовлетворить потребности населения при минимальных издержках, лишенной чиновничьего произвола, работающей на общество.
46960. Електpифiкaцiя технoлoгiчних пpoцеciв в cвинapнику-вiдгoдiвельнику нa 1000 гoлiв 3.18 MB
  В дaнiй poбoтi здiйcненo електpифiкaцiю тa aвтoмaтизaцiю тaких технoлoгiчних пpoцеciв, як гнoєпpибиpaння, poздaчa кopмiв, пiдiгpiв вoди. Нaведенo вибip cилoвoгo i ocвiтлювaльнoгo oблaднaння, aпapaтiв кеpувaння i зaхиcту. Зpoблений pозpaхунoк електpичнoгo ocвiтлення cвинapникa.
46962. Учение Л.С. Выготского о предмете детской психологии, единице анализа психики и методы ее исследования. Переживание как единица анализа развития личности 39.5 KB
  Переживание как единица анализа развития личности. Выготского была направлена то чтобы перевести психологию от чисто описательного эмпирического и феноменологического изучения явлений к раскрытию их сущности предложив иное понимание хода условий источника формы специфики и движущих сил психического развития ребенка; описал эпохи стадии и фазы детского развития а также переходы между ними в ходе онтогенеза; он выявил и сформулировал основные законы психического развития ребенка....