26064

Макромолекулы как основа организации биологических структур

Контрольная

Химия и фармакология

Первичная структура линейная. Вторичная структура. Структура полипептидной цепи спирализована неполностью. Такие параллельно расположенные участки структура конфигурация представляет собой складчатую структуру которая включает параллельные цепи связанные водородной связью.

Русский

2013-08-17

23.39 KB

21 чел.

Макромолекулы как основа организации биологических структур. Основу структурной организации живого составляют макромолекулы, прежде всего важнейшие биополимеры – белки и нуклеиновые кислоты. В макромолекулах происходят сложные процессы трансформации Е, включающие миграцию Е электронного возбуждения и транспорт электронов. В основе функционирования макромолекул лежит электронно-конформационные взаимодействия, которые проявляются в самых различных процессах, где участвуют биологически активные макромолекулярные комплексы. Тепловые движения атомов, входящие в полипептидную цепь, их повороты и вращения вокруг связей приводят к созданию большого количества внутренних степеней свободы. Это приводит к свертыванию цепи и образованию клубков макромолекул – макроскопические системы, в которых проявляются статический характер параметров (размеры, формы, степень свертывания). Как физический объект их своеобразие проявляются в сочетании как статических, так и механических особенностей поведения макромолекул. С одной стороны большое число взаимодействий атомов создают большое количество степеней свободы и возможны создания различных конформаций, с другой стороны наличие химической связи между атомами ограничено -возможно образование конформеров. Взаимодействия атомов химической ковалентной связи определяет: 1. цепное строение биополимеров. 2. соединение друг с другом мономеров. Клетки и их органоиды – гетерогенные системы. Их существование и функц-ие опред-ся межмолекулярными взаимодействиями нековалентного характера (взаимодействуют слабо, потому что сильные взаимодействия создали бы устойчивые жестские структуры, лишенные молекулярной подвижности, а молекулярная подвижность необходима для выполнения различных задач (регуляция химических реакций, трансформация Е). Слабое взаимодействие в биологических системах: 1.Вандервальсовы силы, 2.Ионные связи, 3.Водородные связи, 4.Гидрофобные взаимодействия. Первичная структура – линейная. Важную роль в конформации полипептидов играют вандевальсовые силы, гидрофбные взаимодействия, водородные связи. Вторичная структура. Пептидная цепь в белках имеет спиральную конфигурацию (-спираль). Каждый атом H2 имеет избыточный «+» заряд, притягивающийся к «-» заряженному атому О2 в следующем витке спирали. Внутри образуются пептидные связи, а боковые радикалы аминокислот обращены наружу и могут взаимод-ть с молекулами окружающей среды. Спиральная конфигурация – вторичная. Структура полипептидной цепи спирализована неполностью. Инсулин – 60%. Причиной нарушения спирали являются: 1. Образование дисульфидных связей, которые могут соединить несколько спиралей между собой. В местах образования их ослабляется Н-связь и нарушается спирализация. 2.Наличие радикалов некоторых аминокислот, которые не укладываются в спираль и образуют отдельные складки, скрещивания водородных связей. Такие параллельно расположенные участки - - структура, - конфигурация представляет собой складчатую структуру, которая включает параллельные цепи, связанные водородной связью. Исследования показали, если в полипептидной цепи есть остатки  Глу, Ала, Лей- образуются ά – спираль, а если Мет, Вал, Изолей, то - структура. В зав-ти от хар-ра вторичной структуры белки делятся на три группы: 1.Белки с преобладанием - структуры (гемоглобин, миоглобин). 2.Белки, упакованы по типу - структуры. 3.Смешанная вторичная структура. Третичная структура – строго упорядоченная в пространстве укладка спирали и несколько участков цепи. Каждый белок имеет свою конфигурацию. Это связано с тем, что свободные карбоксильные, гидроксильные, аминные и другие группы боковых радикалов, взаимодействующих между собой с образованием амидных сложных эфирных связей. Водородные связи соединяют остатки двух соседних цепей и образуются дусульфидные мостики. Это делает структуру полужесткой. Четвертичная структура: Объединение двух и более субъединиц. Третичная структура приводит к созданию сложной активной белковой молекулы. Гемоглобин: 4 глобулы. В случае глобулы полипептидная цепь свернутая в клубок – третичная. Наличие нескольких сшивок S-S накладывает ограничение на конформацию. Глобула формирует слабые взаимодействия (гидрофобные→ взаимодействия цепных молекул друг с другом). Собранные в пачки рассматриваются и образуются фибриллярные структуры, которые функционируют вне раствора и формируют надмолекулярные белковые структуры, которые состоят из большего количества макромолекул с невалентными взаимодействиями- это клеточные мембраны, хромосомы, глобулы, нити в молекулах. Нуклеиновые кислоты. Уотсон Крик – структура ДНК, которая представляет собой правовинтовую спираль, из двух полинуклеиновых цепей, при этом одна цепь обвита вокруг другой. Таким образом, пары гетероциклических оснований нах-ся внутри. Обе цепи соединены между собой Н-связями, которые возникают между гетероциклическими основаниями.


 

А также другие работы, которые могут Вас заинтересовать

77690. Способы кодирования данных 121 KB
  Эти моменты изменения полярности называются сменой знака. Каждая смена знака приводит к тому что считывающая головка выдает импульс напряжения; именно эти импульсы устройство регистрирует во время чтения данных. Но при этом считывающая головка генерирует не совсем тот сигнал который был записан; на самом деле она создает ряд импульсов каждый из которых соответствует моменту смены знака. Это устройство преобразует двоичные данные в электрические сигналы оптимизированные в аспекте размещения зон смены знака на дорожке записи.
77691. Аппаратная реализация RLL-кодирования 56.5 KB
  Наибольшее распространение по крайней мере для жестких дисков PC получило так называемое кодирование с ограниченной длиной отрезка или RLLкодирование. Математики и инженеры считают способ 27 RLL разновидностью записи с групповым кодированием Groupoded Recording GCR. Обычная форма способа 27 RLL относится к кодированию GCR с переменной длиной.
77692. Ограничения емкости дисков 36.5 KB
  Соответствующие ограничения определяются как интерфейсом T так и версиями BIOS см. Кроме того в зависимости от версии BIOS значение этого ограничения может находиться еще ниже например на отметке в 84 Гбайт или даже 512 Мбайт. Это может случиться в результате наложения ограничений для T на ограничения BIOS что в конечном итоге может привести к еще большим ограничениям. BIOS обращается к драйверу жесткого диска с помощью прерывания INT13h которое предоставляет функции чтения и записи на диск на уровне секторов.
77693. Функциональная схема управления жесткого диска 287.5 KB
  Плата с электронными компонентами крепится снизу к шасси накопителя. приведена функциональная схема типичного накопителя на примере SCSI. Элементы изображенные в левой части схемы внутри области обведенной штрихпунктирной линией с надписью HD располагаются в изолированном блоке головок и магнитных дисков а элементы обведенные линией с надписью ПМ на печатном модуле накопителя.
77696. Перпендикулярная запись, гибридные накопители и прочие технологии 68 KB
  Направление эволюции С момента появления первых жестких дисков и до недавних пор совершенствование винчестеров в основном двигалось в одном направлении в сторону увеличения плотности записи просто методом масштабирования. Вполне возможно эволюция протекала бы в подобном ключе и до сегодняшнего дня однако в дело вмешалась сама природа поставив на пути дальнейшего роста плотности записи так называемый эффект супермагнетизма. Таким образом чем больше магнитных частиц можно втиснуть на один квадратный дюйм поверхности тем большей окажется...
77697. Индустрия жестких дисков: тенденции 155 KB
  Создание IBM RAMAC, первой коммерческой системы с произвольным доступом к данным, считается официальным рождением жесткого диска. За время, прошедшее с этого момента, индустрия сделала гигантский шаг вперед. Судите сами: объем накопителей увеличился примерно в 200 тыс. раз, их удельная стоимость — в 25 млн, а поверхностная плотность записи — в 75 млн раз