26176

Соединительная ткань. Межклеточное вещество

Доклад

Биология и генетика

оединительная ткань составляет до 50% массы человеческого организма. Это связующее звено между всеми тканями организма. Различают 3 вида соединительной ткани. Соединительная ткань может выполнять как самостоятельные функции, так и входить в качестве прослоек в другие ткани

Русский

2015-01-19

71.5 KB

3 чел.

4

Соединительная ткань В. 250599

С О Е Д И Н И Т Е Л Ь Н А Я  Т К А Н Ь

ОСОБЕННОСТИ ХИМИЧЕСКОГО СТРОЕНИЯ СОЕДИНИТЕЛЬНОЙ ТКАНИ

Соединительная ткань составляет до 50% массы человеческого организма. Это связующее звено между всеми тканями организма. Различают 3 вида соединительной ткани:

- собственно соединительная ткань;

- хрящевая соединительная ткань;

- костная соединительная ткань

Соединительная ткань может выполнять как самостоятельные функции,  так и входить в качестве прослоек в другие ткани.

ФУНКЦИИ СОЕДИНИТЕЛЬНОЙ ТКАНИ

1. Структурная

2. Обеспечение постоянства тканевой проницаемости

3. Обеспечение водно-солевого равновесия

4. Участие в иммунной защите организма

СОСТАВ И СТРОЕНИЕ СОЕДИНИТЕЛЬНОЙ ТКАНИ

 В соединительной ткани различают: МЕЖКЛЕТОЧНОЕ (ОСНОВНОЕ) ВЕЩЕСТВО, КЛЕТОЧНЫЕ ЭЛЕМЕНТЫ, ВОЛОКНИСТЫЕ СТРУКТУРЫ (коллагеновые волокна). Особенность: межклеточного вещества гораздо больше, чем клеточных элементов.

МЕЖКЛЕТОЧНОЕ (ОСНОВНОЕ) ВЕЩЕСТВО

Желеобразная консистенция основного вещества объясняется его составом. Основное вещество - это сильно гидратированный гель,  который образован высокомолекулярными соединениями, составляющими до 30% массы межклеточного вещества. Оставшиеся 70% - это вода.

Высокомолекулярные компоненты  представлены белками и углеводами. Углеводы по своему строению являются  гетерополисахаридами - ГЛЮКОЗОАМИНОГЛИКАНЫ (ГАГ).  Эти  гетерополисахариды построены из дисахаридных единиц, которые и являются их мономерами.

По строению мономеров различают 7 типов ГАГ:

1. Гиалуроновая кислота

2. Хондроитин-4-сульфат

3. Хондроитин-6-сульфат

4. Дерматансульфат

5. Кератансульфат

6. Гепарансульфат

7. Гепарин

Мономеры различных ГАГ построены  по одному принципу.  Во первых, в их состав входят гексуроновые кислоты: бета-D-глюкуроновая кислота, бета-L-идуроновая кислота. В некоторых ГАГ вместо бета-D-глюкуроновой кислоты встречается бета-D-галактоза:

Вторым компонентом мономера ГАГ является амин. Гексозамины представлены глюкозамином и галактозамином, а чаще их ацетильными производными:  бета-D-N-ацетилглюкозамином, бета-D-N-ацетилгалактозамином:

В составе мономера гексуроновая кислота и гексозамин соединяются 1,3-бета-гликозидной  связью.  Исключение - гепарин (у него 1,3-альфа-гликозидная связь).  Между мономерами 1,4-бета-гликозидная связь (гепарин - 1,4-альфа-гликозидная связь) (смотрите рисунок). Различаются ГАГ строением мономеров,  их количеством, связями между ними.

ГИАЛУРОНОВАЯ КИСЛОТА.

Молекулярная масса этого полимера - до 1.000.000 Da.  Мономер построен из глюкуроновой кислоты  и  N-ацетилглюкозамина.  Внутри мономера - 1,3-бета-гликозидная связь, между мономерами - 1,4-бета-гликозидная связь.  Гиалуроновая кислота может находиться и  в свободном виде, и в составе сложных агрегатов. Это единственный представитель ГАГ, который не сульфатирован.

ХОНДРОИТИН-СУЛЬФАТЫ.

2 вида:  хондроитин-4-сульфат и хондроитин-6-сульфат. Отличаются друг от друга местом расположения  остатка  серной  кислоты. Все они содержат остаток серной кислоты. Мономер хондроитин-сульфата построен из глюкуроновой  кислоты  и  N-ацетилгалактозаминсульфата. Встречаются в связках суставов и в ткани зуба.

ДЕРМАТАН-СУЛЬФАТ.

Его мономер  построен  из  идуроновой  кислоты  и  галактозамин-4-сульфата. Он является одним из структурных компонентов хрящевой ткани.

КЕРАТАН-СУЛЬФАТ.

Мономер кератан-сульфата  состоит из галактозы и N-ацетилглюкозамин-6-сульфата.

ГЕПАРАН-СУЛЬФАТ и ГЕПАРИН.

Они сильно сульфатированы  (в  мономере  2-3  остатка  серной кислоты).  В  состав  их  входят глюкуронат-2-сульфат и N-ацетилглюкозамин-6-сульфат.

Длинные полисахаридные  цепи  складываются в глобулы.  Однако эти глобулы рыхлые (не имеют компактной укладки) и занимают сравнительно  большой объем.  ГАГ являются гидрофильными соединениями, содержат много гидроксильных групп,  имеют  значительный  отрицательный  заряд (много карбоксильных и сульфогрупп).  Значительный отрицательный заряд способствует присоединению к ним положительно заряженных катионов калия, натрия, кальция, магния. Это еще более увеличивает способность удерживать  воду,  а  также  способствует диссоциации молекул этих веществ в соединительной ткани.

ГАГ входят в состав сложных белков, которые называются ПРОТЕОГЛИКАНАМИ. ГАГ составляют в протеогликанах 95% их веса. Остальные 5% веса - это белок. Белковый и небелковый компоненты в протеогликанах связаны прочными,  ковалентными связями. Как построена молекула протеогликанов?

 

Белковый компонент - это особый COR-белок. К нему при помощи трисахаридов присоединяются ГАГ. 1 молекула COR-белка может присоединить до 100 ГАГ.

В клетке протеогликаны связаны с гиалуроновой кислотой. Образуется сложный надмолекулярный комплекс.  В  его  составе:  гиалуроновая кислота, особые связующие белки,  а также протеогликаны.  Упругие цепи ГАГ в составе протеогликанов образуют образуют макромолекулярные сетчатые структуры. Такое химическое  строение  обеспечивает  выполнение функции молекулярного сита с определенными размерами пор при транспорте различных веществ и метаболитов. Размер пор определяется типом ГАГ, преобладающим в данной конкретной ткани. Например, соединительнотканая капсула почечного клубочка обеспечивает селективный транспорт веществ в процессе ультрафильтрации. За счет множества сульфо- и карбоксильных групп сетчатые структуры являются полианионами, способными депонировать воду, некоторые катионы (К+, Na+, Ca+2, Mg+2).

Кроме протеогликанов, основное вещество содержит гликопротеины.

 

ГЛИКОПРОТЕИНЫ.

Их углеводный компонент - это олигосахарид, состоящий 10 - 15 мономерных единиц. Этими мономерными единицами могут быть в основном минорные моносахариды:  манноза, метилпентозы рамноза и фукоза, арабиноза, ксилоза. На  конце  этого олигосахарида имеется еще одно производное моносахаридов:  сиаловые кислоты (ацильные производные нейраминовой кислоты). Если в крови увеличивается концентрация  сиаловых  кислот  - значит,  идет распад межклеточного матрикса. Это бывает при воспалении.

ГЛИКОПРОТЕИНЫ делят на 2 группы:

1. Растворимые

2. Нерастворимые.

Углеводная часть гликопротеинов очень вариабельна. Важное значение имеет последовательность моносахаридов, как и последовательность аминокислот в белковой части.

Из гликопротеинов наиболее изучены растворимый фибронектин и нерастворимый ламинин.

РАСТВОРИМЫЕ гликопротеины представлены особым белком - ФИБРОНЕКТИНом.   Молекулярная масса фибронектина - 440 kDa. Он состоит из двух полипептидных цепей, соединенных дисульфидным мостиком. Имеет центры связывания с протеогликанами, с волокнистыми структурами, гликолипидами клеточных мембран. Поэтому фибронектин называют "молекулярным клеем".  Он обычно располагается на поверхности фибробластов и участвует  в  адгезии всех перечисленных клеточных структур, а, значит, и клеток. Известно, что при опухолевых заболеваниях количество фибронектина снижается, что способствует метастазированию опухоли.

К растворимым гликопротеинам также относятся COR-белок - компонент протеогликанов,  связующие белки, а также целый ряд белков плазмы крови.

НЕРАСТВОРИМЫЕ гликопротеины образуют "каркас", "строму" межклеточного матрикса.

К нерастворимым гликопротеинам относится ЛАМИНИН. Молекулярная масса этого белка - 10000 kDa. Содержит такие же углеводные компоненты, как и ганглиозиды клеточных мембран.

Углеводные компоненты гликопротеинов также, как и углеводные компоненты гликопротеинов обладают свойствами тканевых антигенов.

КАТАБОЛИЗМ КОМПОНЕНТОВ ОСНОВНОГО ВЕЩЕСТВА

Идет под действием некоторых гидролаз.

Например, НЕЙРАМИНИДАЗА отщепляет от гликопротеинов N-ацетилнейраминовую (сиаловую) кислоту, и уже дестабилизированный гликопротеин поглощается макрофагами. Поэтому концентрация сиаловых кислот в крови - характеристика состояния соединительной ткани. При воспалительных процессах эта концентрация намного возрастает.

При недостаточности ферментов катаболизма основного вещества развиваются заболевания - мукополисахаридозы, при которых в тканях происходит накопление тех или иных ГАГ.

 

ВОЛОКНА СОЕДИНИТЕЛЬНОЙ ТКАНИ

В межклеточном матриксе находятся 2 типа волокнистых структур: КОЛЛАГЕНОВЫЕ и ЭЛАСТИНОВЫЕ ВОЛОКНА. Основным их компонентом является нерастворимый белок КОЛЛАГЕН.

КОЛЛАГЕН - сложный белок, относится к группе гликопротеинов, имеет четвертичную структуру,  его молекулярная масса  составляет 300 kDa. Составляет 30% от общего количества белка в организме человека. Его фибриллярная структура - это суперспираль, состоящая из 3-х альфа-цепей. Нерастворим в воде, солевых растворах, в слабых растворах кислот и щелочей.  Это связано  с  особенностями  первичной структуры коллагена.  В коллагене 70% аминокислот являются гидрофобными. Аминокислоты по длине полипептидной цепи  расположены группами (триадами),  сходными друг с другом по строению, состоящими из трех аминокислот. Каждая третья аминокислота в первичной структуре коллагена - это глицин (триада (или группа): (гли-X-Y)n, где X - любая аминокислота или оксипролин, Y - любая аминокислота или оксипролин или оксилизин). Эти аминокислотные группы в полипептидной цепи многократно повторяются.  Необычна и вторичная структура коллагена:  шаг одного витка спирали составляют только  3  аминокислоты (даже немного меньше, чем 3), а не 3.6 аминокислоты на 1 виток, как это наблюдается у других белков. Такая плотная упаковка спирали объясняется присутствием глицина. Эта  особенность определяет высшие структуры коллагена. Молекула коллагена построена из 3-х цепей  и  представляет  собой тройную спираль. Эта тройная спираль состоит из 2-х альфа-1-цепей и одной альфа-2-цепи.  В каждой цепи 1.000 аминокислотных  остатков.  Цепи  параллельны и имеют необычную укладку в пространстве: снаружи расположены все радикалы гидрофобных аминокислот. Известно несколько типов коллагена, различающихся генетически.

СИНТЕЗ КОЛЛАГЕНА

Существуют 8 этапов биосинтеза коллагена: 5 внутриклеточных и 3 внеклеточных.

1-Й ЭТАП

Протекает на рибосомах, синтезируется молекула-предшественник: препроколлаген.

2-Й ЭТАП

С помощью сигнального пептида “пре” транспорт молекулы в канальцы эндоплазматической сети. Здесь отщепляется “пре” - образуется “проколлаген”.

3- Й ЭТАП

Аминокислотные остатки лизина и пролина в составе молекулы коллагена подвергаются окислению под действием ферментов пролилгидроксилазы и лизилгидроксилазы (эти окислительные ферменты относятся к подподклассу монооксигеназ) (смотрите рисунок).

При недостатке витамина “С” - аскорбиновой кислоты наблюдается цинга, - заболевание, вызванное синтезом дефектного коллагена с пониженной механической прочностью, что вызывает, в частности, разрыхление сосудистой стенки и другие неблагоприятные явления.

4-Й ЭТАП

Посттрасляционная модификация - гликозилирование проколлагена под действием фермента гликозил трансферазы. Этот фермент переносит глюкозу или галактозу на гидроксильные группы оксилизина.

5-Й ЭТАП

Заключительный внутриклеточный этап - идет формирование тройной спирали - тропоколлагена (растворимый коллаген). В составе про-последовательности - аминокислота цистеин, который образует дисульфидные связи между цепями. Идет процесс спирализации.

6-Й ЭТАП

Секретируется тропоколлаген во внеклеточную среду, где амино- и карбоксипротеиназы отщепляют (про-)-последовательность.

7-Й ЭТАП

Ковалентное “сшивание” молекулы тропоколлагена по принципу “конец-в-конец” с образованием нерастворимого коллагена. В этом процессе принимает участие фермент лизилоксидаза (флавометаллопротеин, содержит ФАД и Cu). Происходит окисление и дезаминирование радикала лизина с образованием альдегидной группы. Затем между двумя радикалами лизина возникает альдегидная связь.

Только после многократного сшивания фибрилл коллаген приобретает свою уникальную прочность, становится нерастяжимым волокном.

Лизилоксидаза является Cu-зависимым ферментом, поэтому при недостатке меди в организме происходит уменьшение прочности соединительной ткани из-за значительного повышения количества растворимого коллагена (тропоколлагена).

8-Й ЭТАП

Ассоциация молекул нерастворимого коллагена по принципу “бок-в-бок”. Ассоциация фибрилл происходит таким образом, что каждая последующая цепочка сдвинута на 1/4 своей длины относительно предыдущей цепи.

 

ЭЛАСТИЧЕСКИЕ ВОЛОКНА

2-й вид волокон - эластические.  В основе  строения  -  белок ЭЛАСТИН. Эластин еще более гидрофобен, чем коллаген. В нем до 90% гидрофобных аминокислот. Много лизина, есть участки со строго определенной последовательностью расположения аминокислот. Цепи укладываются в пространстве в виде глобул.  Глобула из одной  полипептидной цепи называется альфа-эластин.  За счет остатков лизина происходит взаимодействие между молекулами альфа-эластина.

В образовании этой структуры принимают участие радикалы  аминокислоты лизина.  Это структура ДЕСМОЗИНА. ДЕСМОЗИН - это структура пиридина,  которая образуется при взаимодействии лизина  4-х молекул альфа-эластина.

КЛЕТОЧНЫЕ ЭЛЕМЕНТЫ СОЕДИНИТЕЛЬНОЙ ТКАНИ.

Это ФИБРОБЛАСТЫ,  ТУЧНЫЕ КЛЕТКИ и МАКРОФАГИ. В них происходят процессы синтеза структурных компонентов, а также процесс распада соединительной ткани.  Коллаген обновляется на 50%  за 10 лет.  В фибробластах   идут  синтетические  процессы:  синтез  коллагена, эластина.


 

А также другие работы, которые могут Вас заинтересовать

28616. Подпрограмма 21.26 KB
  Функции Другой вид подпрограммыфункцияоформляется аналогично процедуре. Отличительные особенности функции: она имеет только один результат выполнения но может иметь несколько входных параметров; результат обозначается именем функции и передаётся в основную программу. Функция оформляется в следующем виде: Function имя функции формальные параметры: тип: тип значения функции; Var . Вызов функции можно делать непосредственно внутри выражения.
28617. В программе на языке FPC 12.55 KB
  Если локальное и глобальное имя совпадают то в подпрограмме локальное имя блокирует глобальное. Формат доступа к глобальному имени: имя программы . глобальное имя .
28618. Процедурные типы 15.45 KB
  Для объявления процедурного типа используется заголовок процедуры функции в котором опускается ее имя например: type Prod = Procedure a b c: Real; var d: Real; Proc2 = Procedure var a b ; РгосЗ = Procedure; Func1 = Function: String; Func2 = Function var s: String: Real; Как видно из приведенных примеров существует два процедурных типа: типпроцедура и типфункция. Вычисление и печать значений этих функций реализуются в процедуре PRINTFUNC которой в качестве параметров передаются номер позиции N на экране куда будет...
28619. Процедуры с ближним и дальним адресом вызова 21.13 KB
  Возможность создавать опережающее описание для процедур позволяет решить следующую проблему: предположим в некоторой программе Вы используете две процедуры с именами Proc1 и Proc2 причем процедура Proc1 использует вложенную процедуру Proc2 а процедура Proc2 в свою очередь использует процедуру Proc1. Поскольку Вы не можете использовать не объявленную ранее процедуру то у Вас возникает проблема связанная с необходимостью развязать зацикленные друг на друга процедуры Proc1 и Proc2. Использование директивы Forward при объявлении процедуры...
28620. Описание и вызов процедур и функций 18.23 KB
  Формат описания процедуры имеет вид: procedure имя процедуры формальные параметры; раздел описаний процедуры begin исполняемая часть процедуры end; Формат описания функции: function имя функции формальные параметры:тип результата; раздел описаний функции begin исполняемая часть функции end; Формальные параметры в заголовке процедур и функций записываются в виде: var имя праметра: имя типа и отделяются друг от друга точкой с запятой. Вызов функции в Турбо Паскаль может производиться аналогичным способом кроме того имеется возможность...
28623. Работа со строками Delphi 26.31 KB
  С помощью операции конкатенации одна строка присоединяется к другой:var S S1 S2: String;begin S:=S1S2;end; Результирующая строка S будет суммой двух слагаемых строк. Длина строки то есть количество символов в строке возвращается встроенной функцией function LengthS: String: Integer; Delphi работает со строками типа String в котором длина строки записывается в начале строки перед первым символом. То есть если:S:='Строка типа String';то S[1] символ 'С' S[2] символ 'т' последний символ в строке S[LengthS] равный 'g'....
28624. Оператор цикла for 14.7 KB
  Прежде всего это оператор цикла с параметром for. Такой тип цикла обычно применяют в тех случаях когда количество возможных повторов известно заранее. Он имеет 2 варианта написания: один для цикла с приращением и другой для цикла с уменьшением: for параметр := выражение 1 to выражение 2 do тело цикла ; for параметр := выражение 1 downto выражение 2 do тело цикла ; В первом случае с использованием цикла forto при каждом проходе цикла называемом итерацией значение параметра увеличивается на 1 а во втором fordownto...