2635

Краткие сведения о погрешности электроизмерительных приборов

Доклад

Физика

Краткие сведения о погрешности электроизмерительных приборов Объектами прямых электрических измерений являются многие электрические и магнитные величины: ток, напряжение, мощность и т.д. Измерение любой физической величины заключается...

Русский

2012-11-12

32 KB

3 чел.

Краткие сведения о погрешности электроизмерительных приборов

Объектами прямых электрических измерений являются многие электрические и магнитные величины: ток, напряжение, мощность и т.д. [1].

Измерение любой физической величины заключается в ее сравнении посредством измерительного прибора с однородной величиной, принятой за единицу. Приборами сравнения являются, например, мосты для измерения сопротивлений путем сравнения их с мерой – образцовым сопротивлением, и потенциометры, где неизвестная ЭДС сравнивается с ЭДС нормального элемента. Но это не самые распространенные методы измерений.

Более простыми и наиболее распространенными способами являются измерения с помощью приборов непосредственного отсчета, показывающих численное значение измеряемой величины на шкале или цифровом табло. Этап сравнения с мерой у таких приборов происходит при их производстве, где шкалы градуируют в единицах (или долях) измеряемой величины.

Естественно возникает вопрос, какую погрешность мы допускаем, снимая показание со шкалы электроизмерительного прибора. Как известно, погрешность измерения любой физической величины складывается из трех слагаемых: погрешности случайной, погрешности приборной и погрешности округления[2]. Сообщим некоторые сведения о приборной погрешности. Согласно ГОСТ она определяется следующим образом: пр=2/3, где предельная погрешность электроизмерительного прибора, которая определяется его классом точности (множитель 2/3 берется в том случае, если принята надежность р=0,95).

Допустим, измерение тока производятся амперметром, класс точности которого 1,0. Предельная погрешность такого прибора составляет

,

где Iпр –наибольший ток, который можно измерить данным прибором, – предел измерения прибора.

Пусть амперметр имеет предел измерения 100 А. При классе точности 1,0 предельная погрешность этого прибора I=1,0 А . Приборная погрешность при однократном измерении данным прибором составит пр=2/3 0,7А (без учета погрешности округления!).

Если при однократном измерении амперметр показал, например, 45,0 А, то истинное значение тока при надежности 0,95 будет находиться в пределах (45,00,7) А, если амперметр показал 20,0 А, то корректный ответ об истинном значении тока таков: (20,00,7) А.

За сведениями о погрешности приборов с цифровой индикацией следует обращаться к их паспортам.

1.Касаткин А.С., Немцов М.В. Электротехника. М.: Энергоатомиздат, 1983. Гл.12.

2.Братухин Ю.К., Путин Г.Ф. Обработка экспериментальных данных. /Перм. ун-т;  Пермь, 2003.


 

А также другие работы, которые могут Вас заинтересовать

34672. Колообіг води в атмосфері 1.42 MB
  Розподіл води на планеті distribution of wter in km3 x 106 Rocks not usble 150 Ocens 97. сказано що âвикористання води на нашій планеті постійно зростає і вже найближчим часом у багатьох її регіонах слід чекати дефіциту прісної водиâ. Деякі характеристики ланок кругообігу води Вода на Землі постійно перебуває в процесі кругообігу.
34674. Походження основних компонентів хімічного складу атмосферних опадів 38 KB
  Постійним природним джерелом надходження сірководню та сірчистого газу в атмосферу є вулканічна діяльність. Робота промислових підприємств постачає в атмосферу велику кількість сполук сірки у вигляді SO2 SO3 H2S CS2. Сполуки сірки викидаються в атмосферу також підприємствами що виробляють і застосовують сірчану кислоту та сірководень а також при спалюванні органічних решток в териконах. Сполуки азоту що надходять в атмосферу представлені оксидами азоту N2O NO NO2 N2O3 N2O5.
34675. Прямий аерозольний вплив аерозолів на клімат. Непрямий аерозольний ефект впливу на клімат 259.5 KB
  Вивчення впливу аерозолів збільшення вмісту яких в значній мірі теж повязане з діяльністю людини розпочалося лише в 1990х роках. Тому існує ще досить багато невизначеностей щодо кліматоформуючої ролі аерозолів. На відміну від парникових газів які досить рівномірно розподілені в атмосфері завдяки довготривалому перемішуванню час перебування деяких з них в атмосфері може досягати 100 років розподіл аерозолів дуже нерівномірний.
34676. Розподіл озону у просторі та часі 1006.5 KB
  Найбільш точно в атмосфері Землі визначається загальний вміст озону ЗВО. ЗВО Х як вже згадувалось вище це товщина шару озону приведеного до нормальних тиску і температури. Величина Х є сумарною або інтегральною кількісною характеристикою шару озону іноді замість неї використовують зведену товщину шару озону .
34677. Роль колообігу води в природі в процесах формування хімічного складу атмосфери 719.5 KB
  Нестача води у ґрунті призводить до погіршення живлення рослин і зниження врожаю сільськогосподарських культур. Тому для забезпечення у ґрунті води здійснюють цілий комплекс агрохімічних заходів. сказано що âвикористання води на нашій планеті постійно зростає і вже найближчим часом у багатьох її регіонах слід чекати дефіциту прісної водиâ.
34678. Парникові гази та їх роль у формуванні клімату 88 KB
  Сукупність цих газів створює в атмосфері парниковий ефект. Суть парникового ефекту полягає в наступному: Земля отримує енергію Сонця в основному у видимій частині спектра а сама випромінює в космічний простір головним чином інфрачервоні промені. Затримуючи тепло в атмосфері Землі ці гази створюють ефект який називається парниковим а гази парниковими. Практично будьякий вид діяльності людини супроводжується викидами парникових газів створюючи таким чином додатковий або антропогенний парниковий ефект.
34679. УТВОРЕННЯ ТА РУЙНУВАННЯ ОЗОНУ 221.5 KB
  1 Фотохімічна теорія утворення озону оксигенний цикл За Чепменом озон в атмосфері утворюється з молекулярного кисню [3]. В результаті дії цих двох протилежних процесів в атмосфері на деяких висотах встановлюється цілком визначена густина озону. Для формування озону в стратосфері перш за все необхідний атмосферний оксиген який утворюється внаслідок фотодисоціації молекули оксигену по реакції 1: Р.
34680. Фотохімічний смог 103.5 KB
  Незважаючи на формування в останні десятиліття загальної тенденції до покращення стану атмосферного повітря в м. Для утворення фотохімічного смогу необхідна наявність в повітрі таких первинних забруднювачів як оксид азоту NO та NO2 які у значній кількості надходять у повітря із відпрацьованими газами автомобільних двигунів; летких органічних сполук ЛОС таких як пропан нбутан етилен бензол формальдегід які в основному надходять через випаровування та згорання палива і розчинників; Метеорологічними передумовами утворення смогу є...